
SPECIAL SECTION ON SECURITY ANALYTICS AND INTELLIGENCE FOR
CYBER PHYSICAL SYSTEMS

Received October 20, 2017, accepted November 28, 2017, date of publication December 11, 2017,
date of current version February 28, 2018.

Digital Object Identifier 10.1109/ACCESS.2017.2782159

Cloud-Based Cyber-Physical Intrusion Detection

for Vehicles Using Deep Learning

GEORGE LOUKAS, TUAN VUONG, RYAN HEARTFIELD , GEORGIA SAKELLARI,
YONGPIL YOON, AND DIANE GAN
Computing and Information Systems, University of Greenwich, London SE10 9LS, U.K.

Corresponding author: Ryan Heartfield (r.j.heartfield@gre.ac.uk)

ABSTRACT Detection of cyber attacks against vehicles is of growing interest. As vehicles typically afford
limited processing resources, proposed solutions are rule-based or lightweight machine learning techniques.
We argue that this limitation can be lifted with computational offloading commonly used for resource-
constrained mobile devices. The increased processing resources available in this manner allow access to
more advanced techniques. Using as case study a small four-wheel robotic land vehicle, we demonstrate
the practicality and benefits of offloading the continuous task of intrusion detection that is based on deep
learning. This approach achieves high accuracy much more consistently than with standard machine learning
techniques and is not limited to a single type of attack or the in-vehicle CAN bus as previous work. As input,
it uses data captured in real-time that relate to both cyber and physical processes, which it feeds as time
series data to a neural network architecture. We use both a deep multilayer perceptron and recurrent neural
network architecture, with the latter benefitting from a long-short term memory hidden layer, which proves
very useful for learning the temporal context of different attacks. We employ denial of service, command
injection and malware as examples of cyber attacks that are meaningful for a robotic vehicle. The practicality
of computation offloading depends on the resources afforded onboard and remotely, and the reliability of
the communication means between them. Using detection latency as the criterion, we have developed a
mathematical model to determine when computation offloading is beneficial given parameters related to
the operation of the network and the processing demands of the deep learning model. The more reliable
the network and the greater the processing demands, the greater the reduction in detection latency achieved
through offloading.

INDEX TERMS Intrusion detection, machine learning, autonomous vehicles.

I. INTRODUCTION
Over the last few years, there have been multiple examples
of both proof of concept and real-world attacks against vehi-
cles. While in the past, these would be focusing primarily
on unlocking automobiles and defeating their immobilis-
ers’ cryptographic protection, they have now progressed into
being increasingly cyber-physical [1], affecting the integrity
and availability of core physical functions, including steering,
accelerating and braking. In 2010 and 2011, researchers from
the University of Washington and University of California
San Diego [2], [3] were the first to demonstrate highly prac-
tical wireless attacks on a common production automobile,
able to affect several of its core functions, including disengag-
ing the brakes or selectively engaging them on only one side
of the vehicle while driven at high speed. Since then, several
other researchers have showcased attacks on a variety of

automobiles, and even time-constrained automotive hacking
competitions have taken place within security conferences.
As a result, automotive cyber security is now considered a
primary concern in the industry [4] and efforts have been
made to document exploitable automotive security vulnera-
bilities [5]. At the same time, reports of attacks onU.S. drones
have emerged during the wars in Afghanistan and Iraq [6],
as well as in relation to the alleged hijacking of a drone by
the electronic warfare unit of the Iranian army [7]. Since then,
researchers have turned their attention to the cyber security of
unmanned vehicles too, including GPS spoofing [8] as well
as sensory channel attacks exploiting the physical limitations
of the vehicles’ LIDAR systems [9] and gyroscopes [10].
Security becomes even more important as driverless auto-
mobiles are becoming a reality, because ensuring their safe
and uninterrupted operation is key for their acceptability by

VOLUME 6, 2018
2169-3536 ⌦ 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

3491

https://orcid.org/0000-0002-3708-1540


G. Loukas et al.: Cloud-Based Cyber-Physical Intrusion Detection for Vehicles Using Deep Learning

the public. In the meantime, there is also increasing interest
in the security of industrial, reconnaissance, rescue and other
types of robotic vehicles, each with their own vulnerabil-
ities and scale of physical impact of cyber attacks against
them [11], [12].

While vehicles may differ enormously in terms of their
type, size, operation and how safety-critical they are, most
tend to share the following characteristics which make them
challenging to secure: (a) Any cyber security functions on
them are resource-constrained, either because of lack of
processing power or because minimising energy consump-
tion has priority; (b) most cyber-physical operations that
an attacker would target are time-critical, especially if they
affect mobility; and (c) unlike cyber threats to conventional
computer systems, which have been meticulously observed
and statistically analysed for decades, threats here are largely
unknown, and consequently there are no meaningful datasets
to be used for benchmarks.

In combination, the above challenges mean that one cannot
rely on purely preventive security measures, such as cryptog-
raphy, but needs to assume that some attacks will go through
and will need to be detected by the vehicle or its operator
quickly and accurately, using only the very limited resources
that can be afforded for an intrusion detection system (IDS).
One approach for this is to include an onboard intrusion
detection module, which would be trained offline to learn
simple rules in relation to its own normal behaviour [13], [14]
or to the signatures of different types of known attacks based
on different monitored features. When in actual operation,
the vehicle would then monitor these features and apply the
simple rules, which would have a relatively low processing
load. This approach can work well for simple and previously
seen attacks. It can have low detection latency and rela-
tively high accuracy [15], [16], but can be considerably less
effective when it encounters unusual conditions or complex
attacks.

An alternative approach, which we evaluate here is to run
the intrusion detection process not onboard, but offloaded to a
powerful external processing system, such as a cloud infras-
tructure. This can reduce the processing load on the actual
vehicle, but importantly, it can also allow leveraging much
more complex intrusion detection techniques, for instance
involving deep learning. In the following sections, we provide
the related work in terms of vehicular intrusion detection
(Section II), our deep learning based approach to intrusion
detection (Section IV), and our testbed, experimentalmethod-
ology and results for different configurations (Section V).
We evaluate the practicality of offloading detection based
on a mathematical model, which we validate experimentally
(Section VI-C). We conclude in section VII with a summary
of our findings and recommendations for future work.

II. RELATED WORK
Although relatively recent as a scientific problem, there
have already been some first attempts to provide intrusion
detection for vehicles, primarily for manned and unmanned

aircraft, robotic vehicles and driverless automobiles. Some
intrusion detection approaches are highly specialised, focus-
ing on specific aspects of a vehicle’s communication, actua-
tion or sensing, while others take a more holistic view of its
health across all three.
In terms of in-vehicle communication, recent work by

Cho and Shin [17] has shown that it is possible to infer
the origin of an attack on an in-vehicle CAN bus network
(e.g., the particular Electronic Control Unit inside a car)
from its voltage profile, the fingerprint of which has been
learned by their detection system. Although relatively narrow
in scope, performance evaluation in two real cars has shown
that there is great merit in learning the normal behaviour of
different aspects of a vehicle, so as to detect and pinpoint
attacks. Along similar lines, Moore et al. [18] have developed
an algorithm to detect anomalies in the CAN bus network
traffic by monitoring the refresh rates of certain commands,
which are shown to be indicative of signal injection attacks.
Tackling the same problem, Martinelli et al. [19] have argued
that normal CAN messages are triggered by human action,
and as such can be modelled by fuzzy techniques. So, they
have developed a technique based on fuzzy-rough nearest
neighbour classification to distinguish between legitimate
CAN messages generated by the human driver and injected
ones generated by an attacker.
In terms of external communication, Lauf and

Robinson [20] and Strohmeier et al. [21] have focused on
the automatic dependent surveillance-broadcast (ADS-B)
protocol used by aircraft to periodically broadcast their
position and other situational data to other aircraft and air
traffic control ground stations. An ADS-B spoofing attack
could severely compromise the safety of the aircraft. To spot
signs of such spoofing attacks, the method proposed by
Lauf et al. looks for suspicious peaks in the probability
density functions of types of data requests between nodes,
as well as any behaviour correlations that would indicate
cooperation between intruders. However, their assumption
is that direct data requests between aircraft are possi-
ble, which is not currently the case in ADS-B. In [21],
Strohmeier et al. have used as input features only statistics
related to the received signal strength (RSS), assuming that
the RSS of spoofed ADS-B signals coming from an attacker
on the ground would differ considerably to that of legitimate
signals coming from aircraft.
Other approaches focus on the actuation of a vehicle and

especially what makes it a vehicle, which is its movement
control. For example, Birnbaum et al. [22] have proposed
a prototype monitoring system geared specifically towards
detecting hardware failures, tampered hardware and suspi-
cious behaviour of the flight control computer. It captures
data on roll, pitch, yaw, and servo motor control parameters,
such as elevator, throttle, rudder and aileron. Their approach
adapts the recursive least squares method as an estimator of
airframe and controller parameters. By establishing a set of
parameter estimations for each drone’s control law, the mon-
itoring system can compare the parameters in between flights

3492 VOLUME 6, 2018



G. Loukas et al.: Cloud-Based Cyber-Physical Intrusion Detection for Vehicles Using Deep Learning

using normalised root mean square deviation. A large value
for the latter indicates a significant difference in parameters
and as such can be used as the basis of an anomaly detection
system. For experimental verification, the approach has been
tested on open-source flight simulation platforms.

Beyond communication and actuation, a vehicle’s safe
operation also depends on sensing. Especially autonomous
vehicles are almost entirely dependent on the robustness of
their sensing processes. This makes them particularly attrac-
tive targets to sensory channel attacks and network-based
false data injection attacks that affect the integrity or avail-
ability of a vehicle’s sensor data, for instance, to disrupt its
collision avoidance subsystem. One approach that is com-
monly used to detect attacks on sensors is to treat them as
standard sensor failure events and utilise statistical anomaly
detection methods. For instance, if it can be assumed that the
rate of change of a sensor’s data cannot exceed a particular
value, then the recursive least-square filter can be used to
discard data that do. Gwak et al. have demonstrated this
approach on a small robotic vehicle whose obstacle avoidance
does not have the luxury of cross-checking between different
types of sensing and is limited to only ultrasonic sensors [23].
The simple approach followed is that if a sensor’s data are
deemed to be unreliable, the particular sensor is excluded
from the vehicle’s collision avoidance procedures.

Other researchers have addressed intrusion detection more
holistically, looking at the wider picture of a vehicle’s state.
Vuong et al. [11], [15], [16] have focused on denial of
service, false data injection and different types of malware
attacks against a robotic vehicle. Their detection method is
based on decision trees with a training phase that involves
a range of attacks and measures their impact on a set of
cyber and physical features. Unsurprisingly, it is the cyber
features that are the most relevant, especially network-related
ones, but it has also been shown that introducing physical
features too, such as battery consumption and physical vibra-
tion of the chassis, can noticeably improve the accuracy of
the specific detection method. In particular, physical vibra-
tion appears to be the result of continuously losing network
connection to the remote controller of the vehicle, and as
a result often entering fail-safe mode for brief durations.
Spotting these physical manifestations early helps reduce
detection latency. One of the most complete solutions for a
drone’s onboard security monitoring framework is R2U2 by
Schumann et al. [24], which monitors traffic on the flight
computer and communication buses, including inputs from
the GPS, the ground control station, sensor readings,
actuator outputs, and flight software status. It looks for com-
mands that should not be run because they are nonsensi-
cal, repeated, ill-formatted, illegal commands or otherwise
dangerous (e.g., ‘‘Reset Flight Software’’ while in-flight),
and also monitors system behaviour, including oscillations
of the aircraft around any of its axes, deviation from flight
path, sudden changes or consistent drifts of sensor readings,
as well as memory leaks, real-time failures and other unusual
software behaviour. Probabilistic security diagnosis is based

on a bayesian network engine. For instance, if barometric
measurements and laser altitude coincide, any transients in
GPS signal strengthwould indicate a likely attack. Implemen-
tation on a reconfigurable field-programmable gate array and
performance evaluation on a NASA DragonEye drone has
provided promising results in detecting spoofed GPS signals
and malicious commands sent to the aircraft. Bayesian net-
works have also been used by Bezemski et al. [25] to classify
the nature of the source of an attack (cyber or physical) on
a robotic vehicle that uses the United Kingdom’s Generic
Vehicle Architecture approach for military vehicles [26].
A very different family of intrusion detection techniques

is behaviour specification, where it is an expert user that
specifies the rules of what is normal. For instance, the rules
used by Mitchell and Chen for drones [27] included that
weapons need to be disarmed outside the target area, that
minimum thrust is used when loitering, that information is
only transmitted to whitelisted destinations etc. These are
transformed into state machines, where the ‘‘attack state’’ is
the result of violation of any of the specified behaviour rules.
In their evaluation, their state machine consisted of 165 safe
and 4443 unsafe states, with probabilities assigned for going
from one state to another one, and using binary grading
for each state (completely safe or completely unsafe). Then,
the proportion of time a device is in safe states is a measure
of the degree of compliance to the behaviour rules. This
was extended in [28] where the authors showed more thor-
oughly that the approach offers the flexibility of adjusting the
strength of detection to reduce false negatives at the expense
of increasing the false positives. The main disadvantage of
this approach is that it typically needs an impractically large
number of states to be specified to accurately capture all
safety specifications for all altitudes, environmental condi-
tions etc.
An aspect of robotic vehicles that is of increasing interest,

whether they are autonomous or not, is their participation in
teams that coexist in the same physical space and share a
set of common interaction rules. For example, when drones
detect a possible collision, the interaction rule may be ‘‘turn
right’’, but this assumes that a drone will always follow the
rules, which is not the case in a cyber intrusion scenario.
Martini et al. [29] have developed a distributed misbehaviour
detection mechanism to be run onboard each drone, based
on a Boolean consensus protocol on the events as they are
observed by them. Each drone uses its own sensors and infor-
mation from its neighbours to predict the allowed trajectories
that another drone can follow if it abides by the interaction
rules. If its actual trajectory does not match the predicted one,
then that drone is deemed as uncooperative. The particular
approach has been tested experimentally with success on
a team of four real drones, including a misbehaving one.
However, extending any conclusions to larger teams with
several misbehaving ones requires rigorous analysis of the
consensus mechanism based on the Byzantine Generals
problem [30]. In the same space, but for land vehicles,
Alheeti et al. [31] have looked into the use of vehicular

VOLUME 6, 2018 3493



G. Loukas et al.: Cloud-Based Cyber-Physical Intrusion Detection for Vehicles Using Deep Learning

ad hoc networks for the communication between driverless
automobiles, raising the question of what happens when one
of the vehicles misbehaves and launches a cyber attack on
other vehicles on the same network. In this initial work, they
have used NS-2 and mobility simulation tools to evaluate
the performance of an intrusion detection system based on
artificial neural networks. Its input features were some of the
ones typically used in standard network intrusion detection
systems, such as payload sizes, hop counts etc. The same
authors have extended their work to take into account magne-
tometer sensors [32] and gyroscopes [33], and address grey
hole attacks [34].

A common characteristic of all detection mechanisms pro-
vided above, whether local or distributed across multiple
vehicles, is a focus on minimising the processing load, either
by applying lightweight techniques from statistics or by pre-
defining simple behavioural rules that are easy to monitor.
This is because they are all limited by the onboard capabil-
ities of the vehicle at hand. As a result, they usually can-
not leverage modern classification techniques, such as those
currently developed in the field of deep learning. In effect,
the stronger the detection algorithm, the greater the energy
consumption, and in turn the less attractive a solution is for
a resource-constrained vehicle. To overcome this limitation,
we turn to the emerging field of cloud robotics [35]. Our
proposal is to offload the bulk of the processing required to
benefit from deep learning to a more powerful infrastructure
(whether a single server, cloudlet or cloud). By computa-
tion offloading, we refer to the process of executing certain
computational tasks on more resourceful computers which
are not in the user’s immediate computing environment. The
concept has similarities with the online forensics techniques
used for cloud-based detection of malware and tainted data
on Android smartphones [36], [37]. However, instead of
crowd-sourcing detection, we focus on utilising computa-
tional offloading to allow access to deep learning based tech-
niques without the processing and energy cost which would
otherwise be prohibitive for a vehicle. Figure 1 illustrates
the conceptual difference between onboard and offloaded
intrusion detection for a vehicle. In both cases, data collec-
tion and aggregation occurs on the vehicle. In the onboard
case, the reasoning (the analysis of the data to determine
whether there is an attack or not) is also on the vehicle. In the
offloaded case, the data aggregated onboard are sent via a
network to a cloud infrastructure or equivalent to perform the
reasoning.

Over the past couple of years, the growing maturity in
deep learning algorithms has led to wider use outside of
its traditional applications in image and natural language
processing, e.g. in detecting malware [38] or rogue certifi-
cates from trusted certificate authorities [39]. It has also been
used to improve intrusion detection accuracy in traditional
computer networks [40], [41], but not for cyber-physical
systems, such as vehicles. An exception is the recent work by
Kang et al. [42], which is geared towards the automotive
industry and detection of attacks on CAN bus. While a

FIGURE 1. Conceptual comparison between onboard and offloaded
intrusion detection for a vehicle.

promising start, the particular work is limited to a generic
command injection attack, which is detected by monitoring
a single type of data source and using a simple and generalist
deep neural network architecture, which does not account for
the overall state of the vehicle throughmultiple features or for
temporal information (the fact that the impact of the attack
changes over time during the attack). Also, it has been evalu-
ated only in simulation.

III. CONTRIBUTIONS
Here, we progress considerably beyond the state of the art
with the following key contributions:

• Wedesign and evaluate two neural network architectures
for the real-time analysis of multiple sources of data col-
lected periodically onboard the vehicle and representing
both its cyber and physical processes.

• We produce a prototype implementation of deep learn-
ing based intrusion detection for cyber-physical attacks
on a real robotic vehicle, tested for three different types
of attacks and compared against the best-performing
generalist machine learning techniques typically used in
intrusion detection.

• We evaluate both experimentally and using a mathemat-
ical model the practicality of a computational offload-
ing configuration for providing resource-constrained
cyber-physical systems with access to high-end intru-
sion detection.

Note that an early version of this work has been included in
the second author’s PhD dissertation [43]. Here, we expand
through evaluation of two deep learning approaches, a more
practical setup with a single deep learning model for all
attacks rather than individual for each attack, as well as eval-
uation on an unseen attack and an updated literature review.

3494 VOLUME 6, 2018



G. Loukas et al.: Cloud-Based Cyber-Physical Intrusion Detection for Vehicles Using Deep Learning

IV. CYBER-PHYSICAL INTRUSION DETECTION
USING DEEP LEARNING
In real-world cyber-physical attacks, interactions between
sensors, actuators and computational components often
exhibit temporal correlations based on complex time depen-
dencies, of arbitrary length. For example, in a cyber-physical
system such as a robotic vehicle, a rogue operator executing
remote command injection may command the vehicle to
accelerate forward. As a result, this may cause a spike in
network traffic leading to a change in vehicle wheel speed,
which increases power consumption and current. Here, these
feature interactions may occur one after the other in a specific
sequence. The result of such sequential temporally-related
behaviours leads to the generation of time series datasets with
the potential for high-dimensional inputs that change over
time. For feed-forward neural networks this type of temporal
information can be lost, because they look for occurrences
of the same patterns in the feature-space based on current
state, irrespective of the prior input patterns that came before.
By comparison, recurrent neural networks exhibit dynamic
temporal behaviour by using internal memory to process
sequences of inputs based on interconnected hidden layers
from previous input states, feeding the hidden layers from
the previous states as an additional input into the next state.
In this manner, recurrent neural networks are trained based on
historic and current input, where the likelihood of an attack
occurring depends both on prior states of the features and the
current states of the features at that point in time.

As cyber-physical attacks occur as a series of both cyber
and physical events over time, we have chosen to evaluate
the approach of using a recurrent neural network approach for
the development of our cyber-physical IDS, which has proven
highly appropriate for handling multivariate sequential time
series data [44], [45]. The approach taken for construction of
the deep learning IDS starts with launching different types of
cyber attack against the robotic vehicle and collect data with
regards to a series of features, appending the ground truth
labels based on the timings of the attacks (whether an attack
was really in action at each point in time or not). As the data
from different features come at different times and at different
sample rates, we synchronise them in a pre-processing phase.
The output of pre-processing is a data stream with a data
point sample interval ⌧ . In the learning phase, the data is
split into a training set and a validation set. The recurrent
neural network algorithm is applied on the training data to
produce a detection model, as defined by the weights of the
connections between neurons. The model is then validated
using the validation set before producing the final classifier,
which is evaluated experimentally using real-time testing
data. (The precise configuration parameters are summarised
in Table 1.)

Figure 2 shows the recurrent nature of the learning process,
where X (t) is the vector of input features and Y (t) is the binary
detection decision (0 if no attack, and 1 if attack) at time t ,
and Y (t) = WX (t) + RX (t�1), withW and R being the weight

TABLE 1. Deep learning training parameters.

FIGURE 2. Learning process using recurrent neural network.

matrices in relation to X and the incorporation of the output
of the previous step respectively.
In terms of the deep learning architecture designed for

our intrusion detection methodology, in the input layer, U (1),
U (2), ..., U (n) is the time series dataset in a period T , which
corresponds to n = T

⌧ data points. We group k consecutive
data points together into X (k), X (k+1), ..., X (n), as shown
in Figure 3. The purpose of grouping is to help the algorithm
have a picture of more than a single point in taking a detection
decision, but without using the whole dataset (of n data points
in one period T ) either, which would increase considerably
the detection latency. So, 1  k  n. The hidden layer
includes a Long-Short Term Memory (LSTM) layer, a dense
layer and Sigmoid activation. Conventional recurrent neural
networks find it difficult to train with long step sizes due
to the‘‘vanishing gradient’’ problem in gradient-based acti-
vation functions (such as sigmoid or tanh). The vanishing
gradient relates to the exponential decrease in the size of
the gradient (from which the network learns changes in the
input parameters which effect the expected output) by itera-
tively mapping large input regions into smaller output regions

VOLUME 6, 2018 3495



G. Loukas et al.: Cloud-Based Cyber-Physical Intrusion Detection for Vehicles Using Deep Learning

FIGURE 3. RNN with LSTM deep learning architecture.

through sequential layers or long inputs sequences in the
neural network [46]. As a result, when the gradient reaches
a value near zero, the recurrent nature of the neural network
produces small outputs even for large changes in input and as
a result affects the ability of the neural network to learn from
early layers or inputs in long training sequences or over many
hidden layers.

LSTM helps solve this problem by employing a ‘‘gating’’
function (1 to remember the input and pass it to the next
hidden node/layer or 0 to forget the input) that replaces the
activation function. The network is trained on the combi-
nation of the gates in the network and as long as the gates
are 1 along the input sequence or across all hidden layers in
the network, the network can remember the values of early
input to identify how it affects the expected output. We use
a standard LSTM architecture, with each block containing
gates that determine the significance of the input and whether
it should continue to remember its value or forget it, and
when it should output it. The LSTM layer is followed by a
dense layer, where the number of hidden nodes serves as our
main tuning parameter. Then, a sigmoid activation function
converts the values produced by the dense layer into real
values between 0 and 1. Finally, a binary detection decision
(0 or 1) is taken based on a predefined threshold. Below this
threshold, the detection decision is that there is no attack, and
above it, that there is an attack.

Alongside our RNN deep learning approach, we also
develop a deep multi-layer perceptron (MLP) classifier as an
example feed-forward neural network to directly compare the
detection performance between a deep learning architecture
which benefits from learning time-based sequences and one
that does not (RNN with LSTM Vs. MLP). Unlike RNNs,

feed-forward networks send signals in one-direction from
input to output with no feedback loops; the output of any
layer in the MLP classifier does not affect that same layer,
as connections do not form as a cycle as in RNNs.

FIGURE 4. MLP deep learning architecture.

Figure 4 shows the MLP architecture adopted here. It con-
sists of a input layer, one or more hidden layers with Leaky
Rectified Linear Units (LReLU) as an activation function
and an output layer. For MLP neural networks, ReLU acti-
vation is a preferred method over sigmoid to avoid the
vanishing gradient (in logistic gradient descent activation)
occurring over multiple hidden layers in the MLP network.
A ReLU function output is either 0 for input than is smaller
than 0 (e.g., negative) or 1 for input that is larger than 0
(e.g., positive), which allows a MLP network to employ
multiple layers without neuron gradients being saturated for
input.
However, one problem with ReLU activation, known as

‘‘dying ReLU’’, results when ReLUs (neurons) are activated
with a value of 0 which forces their gradient to be set to
zero (i.e., inactive) in back-propagation (e.g., all inputs). This
means that potentially large numbers of neurons in a network
‘‘die’’ as they are stuck in an in active state, between layers,
which results in decreasing model capacity as they are no
longer used. To avoid this, onemethod is to adjust the network
learning rate through methods such as dropout, or by utilising
LReLUs. Instead of setting ReLU neurons to 0, LReLUs
assign non-zero gradient (e.g., 0.01) when a neuron is not
active, which allows the neuron to remain active for negative
input between each layer of the MLP. Inline with our RNN
approach, for the MLP classifier, we also introduce input
and hidden layer dropout to reduce overfitting during net-
work training. During training of the MLP, we have used the
same number of neurons tested within the RNN LSTM mod-
elling, and test up to three hidden layers to establish whether
increasing the network depth and non-linearity of the deep
learning architecture improves attack detection performance
over RNN, which is designed with a single hidden layer using
LSTM gates.

3496 VOLUME 6, 2018



G. Loukas et al.: Cloud-Based Cyber-Physical Intrusion Detection for Vehicles Using Deep Learning

For the deep learning development and implementation,
we have used Keras [47] to run on top of TensorFlow/Theano
library. Keras is an extensible Python neural network library
that supports fast prototyping.

Attack-specific supervised signature-based IDS models
can be impractical and inefficient, as the attack surface grows
and the potential attack configurations increase in number.
semi-supervised and unsupervised IDSmodels do not require
attack vectors to be present within training data, but pro-
vide low detection accuracy for identifying specific threats
(which help identify the source and type of attack), because
training either develops a concept of normal operation (semi-
supervised), or is used to express clusters of membership
between data points (unsupervised). Furthermore, if a dataset
for classification is particularly noisy, this can have a dra-
matic effect on performance, especially as there is little (semi-
supervised) to no (unsupervised) guiding information as to
potential attack states. We have opted to design our deep
learning IDS using a supervised signature-based detection
model. To increase practicality, we develop a single deep
learning model trained on a dataset that comprises all three
types of attacks considered here. The presence of multiple
attack signatures within the model form the basis of being
able to determine whether the vehicle is under attack or not,
but with the increased intelligence of potentially understand-
ing what type of attack it might be.

V. EXPERIMENTAL METHODOLOGY
A. TESTBED: ROBOTIC VEHICLE
The testbed we have developed for the experimental evalua-
tion is a 40 cm long remote-controlled 4x4 robotic vehicle,
with an on-board computer based on a dual-core Intel Atom
D525 CPU and 2 GB of DDR3 RAM, running the Fedora
operating system (Figure 5). The vehicle’s motors are con-
trolled by an Arduino micro-controller. Network access is via
Wi-Fi or Ethernet cable, and remote control is over a TCP
socket to the vehicle’s control board. In addition to network
traffic related to control of the movement of the vehicle, there
is also network traffic generated by the onboard camera video
streaming and control of its actuation (pan and tilt).

B. FEATURES
It has been previously shown that for cyber-physical systems,
taking into account also the physical manifestation of cyber
attacks on the vehicles can improve detection accuracy and
reduce detection latency [15]. In other words, the adverse
impact of a cyber-physical attack can also be seen as an oppor-
tunity for improved intrusion detection. Here, we adopt the
same approach, which allows observing an attack’s impact on
computation, communication and physical operations of the
vehicle. We focus on types of data that are available and can
be extracted on most vehicles without considerable overhead.
We have identified eight input features, four related to com-
munication and processing, which we refer to as the cyber
input features, and four related to the physical properties of

FIGURE 5. The data collection location for each input feature:
USB-connected power meter for Amps and Watts; accelerometer
RMS(X , Y , Z ) for vibration; two quadrature encoders for speed
represented by Diff _L and Diff _R values; CPU utilisation, disk usage and
inbound/outbound network traffic rate measured on the Fedora Linux
control computer.

the robot, which we refer to as the physical input features.
The attack label is the ground truth for the scenario.

• Network Incoming: Received network traffic rates.
• Network Outgoing: Transmitted network traffic rates.
• CPU: The total CPU utilisation.
• Disk Data: The rate of data being written to the disk.
• Encoder:Magnetic encoders have been fitted to the rear
wheel motors, which provide real-time values of their
angular position. The speed is represented by measuring
the difference between two consecutive encoder value
readings in a fixed period of time. The default value for
this period is 33 ms.

• Accelerometer: Represents the vibration of the chas-
sis (using accelerometer measurements). An external
device has been attached to the chassis to capture these
readings.

• Power: The overall power consumption of the vehicle
as measured by a WattsUp? energy meter.1

• Current: The overall current drawn by the vehicle.
• Attack label: This is the ground truth label, which states
whether there is an attack or not at a particular point in
time. This is used to train the model and also to evaluate
its performance.

C. ATTACKS USED IN TRAINING THE MODEL
As representative of a wide range of possible families
of attacks against a robotic vehicle, we have conducted

1www.wattsupmeters.com

VOLUME 6, 2018 3497



G. Loukas et al.: Cloud-Based Cyber-Physical Intrusion Detection for Vehicles Using Deep Learning

FIGURE 6. The impact of the three attacks on an indicative selection of the features monitored, for denial of
service attack scenario (top left), Command injection attack (top right), Malware (Net) attack (bottom).

experiments where the robot is under denial of service (DoS)
attack, command injection attack, and malware attack target-
ing the network interface. The attacks are intermittent. They
appear in-between sections of normal operation, where all
network traffic and applications running are legitimate, and
correspond to the operator’s legitimate interaction with the
vehicle, including commands and sensor values exchanged.
Their precise timings are highlighted in Figure 6 in the form
of grey sections (the attack intervals).

• Denial of Service (DoS) attack. Here, the aim of the
attack is to flood the vehicle’s network interface with
TCP traffic to disrupt the communication between the
legitimate operator and the vehicle. In the particular
testbed, an attack rate of 100 Mbits/s was sufficient to
overwhelm the communication channel. The resulting
intermittent connectivity causes the vehicle to trigger
temporarily its fail-safe mechanism, which is simply to
stop when communication is lost, and then resume its
movement. This causes intermittent physical vibration
of very short duration. The top left in Figure 6 shows the
effect of the attack on some of the features monitored on
the vehicle. Naturally, for a denial of service attack based
on volumes of network traffic, it is Network Incoming
(in the figure, referred to as RxKBTot) that is the fea-
ture most obviously affected during an attack, but even

physical features (e.g., RMS value) seem to be affected
by the accompanied vibration.

• Command injection attack. The robot receives com-
mands from its legitimate operator to move forward, and
at the same time receives rogue ‘‘stop’’ or ‘‘turn left’’
commands from an attacker. The conflicting commands
cause consistent and frequent physical jittering, as the
vehicle attempts to process and act on both commands
within very small periods of time and continuously. This
effect can be observed in the top right graph of Figure 6,
especially in relation to the instantaneous speed value
for each wheel, as represented by the encoder value
(in the figure, referred to as diff_encoder_l), as well as
by the very high RMS values, which are the result of the
consistent physical jittering.

• Malware attack. A piece of malware already installed
in the robot’s onboard control software utilises the
Linux kernel’s network scheduler to modify the net-
work traffic control setting and introduced network
delay. The result in physical space is that the robot’s
movement becomes erratic with frequent and relatively
consistent stops during the attacks. The bottom graph
in Figure 6 illustrates the effect of the attack on some
of the features monitored on the vehicle, as captured
experimentally.

3498 VOLUME 6, 2018



G. Loukas et al.: Cloud-Based Cyber-Physical Intrusion Detection for Vehicles Using Deep Learning

D. EXPERIMENTAL DEEP LEARNING RESULTS
We have designed the recurrent neural network (RNN) archi-
tecture as shown in Figure 3, with the configuration parame-
ters of Table 1; here we have used the same parameters for
the MLP architecture with the exception of the activation
function and sequence group (k) which is not relevant to
MLP. As primary metric of the performance of the intrusion
detection model, we have used accuracy ACC = (TP +
TN )/(TP + FP + TN + FN ), where TP corresponds to the
true positives (correct detection of attack), FP to the false pos-
itives (incorrect detection of attack), TN to the true negatives
(correct detection of non-attack), and FN to false negatives
(incorrect detection of non-attack).

1) PERFORMANCE AGAINST PREVIOUSLY SEEN
TYPES OF ATTACKS
Here, we evaluate the performance of the model in real-
time as it is exposed to the three types of attacks that the
model has already seen. So, the actual data collected are new,
but the same types of attacks have been seen previously in
training and validation. In terms of the sizes of the dataset
collected for each attack, attack and non-attack intervals in
each experimental run. The denial of service experiments
produced 3,114 data points, of which 2,451 were distributed
in four attack intervals and 663 were non-attack data points
in intervals between the attacks. The command injection
experiments produced 3,432 data points, of which 1,402 were
in five attack intervals and 2,030 were non-attack data points
in intervals between attacks. The malware (Net) experiments
produced 2,390 data points in seven attack intervals, of which
950 were attack and 1,439 were non-attack data points in
intervals between attacks.

FIGURE 7. Detection accuracy using the RNN LSTM deep learning model.
The top three are attack types that have been previously seen, while the
bottom one is an attack not previously seen.

Figure 7 shows the overall accuracy of the RNN LSTM
model against the number of neurons in the hidden layer.
We vary the number of neurons from 600 to 1,000 neurons.
We see that 800 neurons are sufficient to achieve high average
detection accuracy (85.7%) across the three previously seen
attack types, and indeed accuracy does not increase as we
increase the number of neurons to 1,000. Figure 8 provides
a comparative measure for the deep MLP model.

FIGURE 8. Detection accuracy using the MLP deep learning model. The
top three are attack types that have been previously seen, while the
bottom one is an attack not previously seen.

TABLE 2. Comparing the performance of our deep learning based
approach against popular machine learning algorithms for intrusion
detection.

We also compare the detection accuracy of the deep learn-
ing approach against standard statistical machine learning
algorithms, which are considered safe generalist choices
for classification problems across a range of domains,
including intrusion detection. A comprehensive study by
Delgado et al. [48], which put to the test 179 different
machine learning classifiers across 121 different datasets
from different areas of application, showed that random
forest was the overall best performing technique, with an
average accuracy of 94% and reporting over 90% accuracy
across 84% of the datasets, followed closely by Support
Vector Machines (SVM) with an average of 92% accuracy.
Random forest and SVM are commonly used in intrusion
detection [49], and for this reason, in Table 2, we compare our
deep learning based approach with random forest, two SVM
variants (with radial kernel and with linear kernel), as well
as with the standard lightweight approaches of using logistic
regression and decision trees (C5.0) previously utilised for
cyber-physical intrusion detection in [15].

VOLUME 6, 2018 3499



G. Loukas et al.: Cloud-Based Cyber-Physical Intrusion Detection for Vehicles Using Deep Learning

Logistic Regression employs Bernoulli distribution to
estimate the probability of a binary response based on
one or more independent features and their relationship with
the attack label. SVMs employ the concept of a hyperplane
in n-1 dimensional space that best separates two classes of
data points with the maximum margin. In SVM, data points
that support either side of the hyperplane are the ‘‘support
vectors’’ and in cases where these data points are not lin-
early separable, are projected to a higher dimensional space
where linear separation is possible. In our case where mul-
tiple classes are present (multiple feature variables and a
dependent variable), a one versus many binary classification
approach is taken. C5.0 functions as a decision tree classifier
employing Boolean logic in series of decision rules, inferred
by the feature data, to determine which class the data belongs
to. Random Forest is an ensemble tree classifier that trains a
number of decision trees with different re-sampled versions
of an original dataset, reducing the high variance inherent
in a decision single tree and improving the generalisation
of model performance by averaging the standard error of all
trees across the ensemble in order to produce a final model
with low variance.

In our experimental comparison, the deep learning based
approach achieves the highest overall detection accuracy rate
as an anomaly-based supervised classification model report-
ing an average classification accuracy of 86.9% compared
to SVM with radial kernel at 79.9%. Surprisingly, the SVM
radial classifier outperformed the deep MLP overall, and
for two out of three of the attacks (DoS, command injec-
tion). For individual classification, deep learning with RNN
using LSTM outperformed all ML algorithms for detecting
command injection with an accuracy of 83.2% compared
to random forest at 78.6% accuracy. However, for the deep
MLP, detection accuracy for command injection was the sec-
ond lowest of all algorithms only beating logistic regression
by 1%. The RNN LSTM deep learning model effectively
equaled decision trees (C5.0), reporting a detection accuracy
of 82.2% compared to 82.4% for the network malware attack
(wht MLP close behind at 80.7%), but was slightly worse
than SVM with a radial kernel for detecting the network
denial of service attack, with 95.4% accuracy compared to
SVM’s 97.4%. By comparison, the deep MLP outperformed
the RNN LTSM deep learning classifier for DoS attack detec-
tion by 0.8%. Overall, these experimental results give a good
indication of utilising the RNN deep learningmodels’ general
ability to perform accurate detection across a range of dif-
ferent attacks when compared to more lightweight machine
learning techniques, which were much less consistent across
the three attacks tested. Furthermore, the capability of the
RNN LSTM to learn attack behaviour over time proved supe-
rior to theMLP deep learning architecture. However, this con-
sistency achieved by deep learning with a RNN comes at the
expense of greater processing requirements and consequently
long processing times.

Note that in Figure 7, for the unseen type of attack (bottom
curve of the figure), increasing the number to 1,000 neurons

proves useful; for the deep MLP this was not the case, adding
a second layer improved accuracy slight which also decreased
when adding further hidden layers. We detail this part of our
experimentation in the next subsection.

2) EVALUATING THE DEEP LEARNING IDS ON AN
UNSEEN TYPE OF ATTACK
Here, we introduce a fourth attack against the robotic vehicle
which takes the form of a malware which generates a random,
but significant processing load on the vehicle’s CPU. We will
be referring to this here as malware (CPU) to differentiate
from the malware (Net) included in the attacks used in the
training of the model. The purpose of this fourth attack is to
serve as an unseen type of attack. The malware (CPU) exper-
iments produced 11,383 data points, of which 6,483 were
attack and 4,900 were non-attack data points in intervals
between attacks.

TABLE 3. Deep learning Vs. other machine learning algorithms detection
accuracy for detecting the ‘‘unseen’’ malware CPU attack.

As shown in Table 3, here the RNN LSTM deep learning
classifier (configured as a 1,000-neuron model) produces the
highest detection accuracy for the CPU malware attack, with
a 4% increase in detection accuracy over SVM (Radial ker-
nel). Similar to the command injection attack, the deep MLP
reported low detection accuracy (second lowest), only 2%
higher than decision trees in this case, but almost 12% lower
than RNN. In this case the deep MLP is using two hidden
layers, with the same number of neurons which reported the
most optimal accuracy at 55%, compared to 53.5%with a sin-
gle hidden layer; adding further hidden layers failed improve
detection accuracy. This result indicates that ability for the
RNN classifier to learn different attack behaviours over time
contributes in a meaningful way to predicting attacks which
might share similar behavioural characteristics (observed in
cyber and physical features) in the lead up to or execution of
an attack.
The relatively lower accuracy rates across all algorithms

are not unexpected, as these are all techniques designed for
seen types of attacks. So, to further evaluate the usefulness of
utilising deep learning in this context too, we compare also
with an unsupervised and a semi-supervised technique typi-
cally employed for unseen types of attack. We have chosen a
one-class SVM as a semi-supervised approach which trains
a model based on a single-class ‘‘concept’’, which refers

3500 VOLUME 6, 2018



G. Loukas et al.: Cloud-Based Cyber-Physical Intrusion Detection for Vehicles Using Deep Learning

TABLE 4. Comparing the performance of the RNN 1000 neuron deep
learning model against k-means clustering and one-class SVM
unsupervised learning.

TABLE 5. Mean detection latency of local deep learning based detection
on particular robotic vehicle.

to the understanding of a single known state (e.g., normal
operation behaviour=TRUE) based on the training data sup-
plied. For prediction, if the model identifies that this state
has deviated or the ‘‘concept’’ has drifted, then an anomaly
state is classified (e.g., normal operation behaviour=FALSE).
For unsupervised learning, we employ k-means clustering to
produce two cluster classes.

Again, the deep learning approach outperforms the semi-
supervised and unsupervised machine learning algorithms
we have tested for the unseen type of attack (and naturally
also for the seen ones). Moreover, as with the supervised
machine learning models tested, our deep learning model
outperformed both the one-class SVM and k-means in detect-
ing the malware (CPU) attack. These results are encouraging
especially as the unsupervised algorithms selected have been
proven to work well within the field of anomaly-based IDS
systems for cyber attacks in different contexts [50]–[52].
Of course, it can be argued that different attacks lead to
different detection accuracy, but see sufficient evidence that
for types of attack that are meaningful in the context of the
cyber-physical security of a robotic vehicle, deep learning
with LSTM is more dependable than the standard machine
learning approaches traditionally used.

However, due to the processing limitations of the vehi-
cle, running deep learning onboard the vehicle can take
too long to be practical. Indicatively, when running the
model periodically every 1 s based on the last 1 s worth of
data collected, the detection latency for the 600, 800 and
1000-neuron architectures is on average (over five runs)
1.163 s, 1.541 s and 1.704 s respectively (Table 5). So,
a detection result for one detection run may not have been
produced before the next periodic run starts.

VI. OFFLOADING INTRUSION DETECTION
To reduce the processing time for reaching a detection deci-
sion, we turn to the concept of offloading, where a higher-end
computing infrastructure carries out the processing. However,
in doing so, we introduce network delays and potential for
network failures, which place extra volatility on the overall
detection latency. In the following sections, we discuss the
network configuration of an experimental testbed for eval-
uating the feasibility of offloading detection to the cloud.
We then present a mathematical model to estimate the con-
ditions under which offloading is practical and preferable to
local on-board detection. We validate the model by compar-
ing to experimental measurements in our testbed.

A. TESTBED: CLOUD-BASED IDS
For our offloading experiments, we have implemented a pri-
vate cloud using OpenStack for cloud provisioning of six
‘‘datacentre-class’’ server nodes; each node containing an
8-core (16 threads) Intel Xeon E5-2640 v3 CPU, 16 GB of
RAM and 1 TB of storage. The private cloud was config-
ured using the standard Ubuntu Openstack reference architec-
ture [53], whereMAAS (Metal as a Service) was employed to
provision one of the six physical servers solely to run the deep
learning IDS system. Very similar cloud-based resources
are available via existing cloud providers such as EC2 of
Amazon Web Services, with options to lease virtual machine
instances with dynamic or fixed resources, or even indepen-
dent physical servers in the provider’s datacentre supplied
as Infrastructure-as-a-Service (IaaS). Here, we have opted to
emulate the latter.

B. THE NETWORKING CONFIGURATION OF OFFLOADING
The network testbed consists of three modules: an 802.11n
wireless local area network (WLAN), a point to point wide
area network (WAN) utilising the WANem wide area net-
work emulator and a remote Openstack cloud platform. The
WLAN provides the vehicle with mobile connectivity to a
local network gateway conducting port forwarding between
the vehicle and the deep learning server for offloading,
through an SSH tunnel over the WAN. Using the client-
side URL transfer library libcurl [54] and PyCURL (Python
Interface to libcurl), the vehicle offloads detection tasks by
uploading sensor data samples, at interval period T .
We have designed the offloading process to employ a

lightweight mechanism that is both robust to different net-
work conditions and suitably secure, enforcing data con-
fidentiality, integrity and authenticity. For this the HTTPS
(HTTP over Transport Layer Security 1.2 (TLS)) protocol
was selected to perform network offloading to a web server
(via PyCURL), using the traditional client-server model to
transfer over a authenticated and encrypted communication
channel. Certificate-based public key server authentication
was employed to guarantee the identity of the cloud test-
bed (and the trustworthiness of the detection results source).
Aside from data confidentiality and integrity protection

VOLUME 6, 2018 3501



G. Loukas et al.: Cloud-Based Cyber-Physical Intrusion Detection for Vehicles Using Deep Learning

FIGURE 9. Experimental testbed including vehicle and offloading infrastructure.

supplied by TLS 1.2, HTTP was selected as a robust net-
work transport protocol due to its native reuse of existing
persistent connections via keep-alive functionality; ensur-
ing the TLS handshake is performed only during the initial
connection. As a result, a HTTP request to offload data to
the web server will reuse an existing HTTP connection as
long as the detection offload period and transport latency
is smaller than the HTTP keep-alive timeout configured.
In this configuration latency incurred by the TLS hand-
shake is effectively avoided after the vehicles initial offload
(e.g., when the vehicle turns on, or connects to a network),
with subsequent cipher-text introducing negligible encryp-
tion and decryption latency. Moreover, HTTP provides a
lightweight choice for data transport as it employs data trans-
fer pipelining and automatic data compression which helps
optimise TCP performance and packet transfer speed, reduc-
ing network load and symptomatically decreasing detection
latency.

All data communication between the vehicle and remote
web server is vehicle initiated, through use of python scripts
making calls to the libcurl library. The scripts operate as a set
of continual loops. On initiation, a sensor sample generated
at interval T is retrieved and transferred via an HTTP POST
to the deep learning cloud for every detection period Td .
If the POST is successful, another loop is then spawned,
continually polling the server with HTTP GET requests until
a detection result is successfully retrieved. On receipt of the
detection result, the next sensor sample is then collected
when the next detection period is reached and the HTTP
data transfer process is repeated. Figure 9 shows a high level
overview of the network topology used to remotely access the
cloud.

C. EVALUATING THE PRACTICALITY OF
OFFLOADING DETECTION
Recently, Canziani et al. conducted a study that compared the
computational performance between multiple state-of-the-art

FIGURE 10. Example of variable offloading detection latency within the
constraints of detection period Td . The top and middle figure correspond
to the practical cases, where ti > 0 or ti = 0 respectively, while the
bottom figure corredsponds to the impractical case, where ti < 0.

neural network architectures in terms of classification accu-
racy, memory footprint, parameters, operations count, infer-
ence time and power consumption [55]. The study showed
that for a minor increase in classification accuracy, the com-
putational cost (e.g., processing time) was also significantly
increased. Therefore, given the resource constraints inherent
in a power-limited vehicle, it would be more efficient to
offload this task to an external and likely more powerful
system in order to reduce computational processing time and
as a result minimise detection latency.
In this manner, realising the benefits of offloading detec-

tion across a distributed service to a server, cloud or cloudlet,
the transportation of detection data requires network con-
nectivity that is resilient to and practically useful over vari-
able conditions; especially over the public Internet where
no reliability or quality of service is guaranteed. For cyber-
physical systems relying on fast and reliable attack detection,
the problem is exacerbated by the risk of dropping crucial data
due to unreliable network connectivity. Therefore, a trade-off
between on-board detection and remote offloading is largely
determined by the available local resources and the quality of
network conditions to the remote detection system.

3502 VOLUME 6, 2018



G. Loukas et al.: Cloud-Based Cyber-Physical Intrusion Detection for Vehicles Using Deep Learning

FIGURE 11. Network offloading time sequence for offloaded IDS detection with detection period Td . The
practicality of offloading depends largely on the time ts needed to complete detection on the server, which in turn
depends on the server’s processing resources.

We consider the task of offloaded periodic cyber-physical
intrusion detection, which involves uploading the latest sam-
ple of data collected from the vehicle to a remote server in
time tx , processing the data on the remote server to produce a
detection result in time ts, and transmitting the result back
to the vehicle in time tr , followed by possible idle time
ti until the next iteration. So, the detection period Td is
Td = tx + ts + tr + ti. Detection can be practical (and not
cause an infinitely increasing queue of delayed results) only
if ti � 0, as presented visually in Figure 10.

Assuming that detection is accurate and attack has
occurred at a random point in time within the previous inter-
val Td , then the detection latency tl is the time between
occurrence of attack and beginning of next detection cycle
plus the time to upload the data, process them, and return
the result. Assuming uniform distribution of the probability of
the attack having occurred at a random time within Td , then
the mean corresponding delay is Td

2 , and overall the mean
detection latency is:

t̄l = Td
2

+ t̄x + t̄s + t̄r (1)

The time to complete the processing to produce the detec-
tion result depends on the algorithm chosen, implementation
approach and the processing resources that are available.

Our aim is to evaluate the upper limits for ts with CPU
resources available in a typical public cloud platform that
allow periodic offloaded detection to be practical, which
translates into ti not dropping below 0. In ideal communi-
cation conditions, where there are no packet losses or net-
work failures, and in accordance with the standard practice
in computation offloading modelling [56], [57], the time to
upload or receive data over a communication channel can be
modelled in relation to the data size uploadedDx and received
Dr by the vehicle and the corresponding transmitting rate Rx
and receiving rate Rr as:

t̄x
(ideal) = Dx

Rx
(2)

t̄r
(ideal) = Dr

Rr
(3)

Thus, the mean detection latency in ideal communication
conditions can be represented as:

t̄l
(ideal) = Td

2
+ Dx
Rx

+ t̄s + Dr
Rr

(4)

In non-ideal communication conditions, where we con-
sider packet loss with a probability p, we assume that,
the delay in establishing that a packet is lost and retransmit-
ting means that each bit lost incurs an increase in communi-
cation delay equivalent to the time it would take to transmit
l bits, where l 2 R+. Mean detection latency in the presence
of packet loss becomes:

t̄l
0 = Td

2
+ ts + (1 + lp)(t̄x

(ideal) + t̄r
(ideal)) (5)

= Td
2

+ ts + (1 + lp)(
Dx
Rx

+ Dr
Rr

) (6)

Mean detection latency increases further if we also take
into account the likelihood of a network failure occurring
after random time t✓ since last failure and being repaired after
random time t⇠ . We assume that failures occur independently
and the number of failures occurring in a period Td follow a
Poisson distribution with constant mean 1

✓ , where ✓ 2 R+

is the mean time between failures (MTBF). We assume that
the time to repair after a failure follows a normal distribution
with a mean time to repair (MTTR) ⇠ .
Communication mechanisms used to transmit the data

sample or receive the detection result may implement a form
of ‘‘keep alive’’ functionality, which keeps a network session
alive for up to TK time after a failure has occurred. If this
time elapses, the session needs to be re-established with
handshakes, e.g., for SSL. We denote the delay incurred by
the handshakes as th.
So, the extra delay incurred by one failure can be repre-

sented as:

1[t⇠ < TK ]t⇠ + 1[t⇠ � TK ](t⇠ + th) = t⇠ + 1[t⇠ � TK ]th

The mean extra delay due to one failure becomes:

⇠ + (1 � P(t⇠ < TK ))t̄h

VOLUME 6, 2018 3503



G. Loukas et al.: Cloud-Based Cyber-Physical Intrusion Detection for Vehicles Using Deep Learning

FIGURE 12. Mean detection latency as measured experimentally and estimated mathematically for the case of network
configurations 1-4. The black curve corresponds to the detection latency when the processing occurs on the vehicle itself without
offloading via a network. (a) Network configuration 1. (b) Network configuration 2. (c) Network configuration 3. (d) Network
configuration 4.

In a detection period Td , due to the Poisson property,
the expected number of failures is 1

✓ Td . So, the mean detec-
tion latency in the presence of both packet losses and network
failures is:

t̄l = t̄l
0 + Td

✓
(⇠ + (1 � P(t⇠ < TK ))t̄h) (7)

t̄l = Td
2

+ t̄s + (1 + lp)(
Dx
Rx

+ Dr
Rr

)

+Td
✓
(⇠ + (1 � P(t⇠ < TK ))t̄h) (8)

To evaluate the maximum mean time that processing
should take to produce the detection result, we take the
extreme case of no idle time between detection intervals,
hence ti = 0 and consequently Td = t̄s,max + t̄x + t̄r .
Equivalently:

t̄s,max = Td � (t̄x + t̄r ) (9)

Themean latency introduced after the data sample has been
collected on the vehicle is (based on (1)):

t̄x + t̄s + t̄r = t̄l �
Td
2

(10)

t̄x + t̄r = (1 + lp)(
Dx
Rx

+ Dr
Rr

)

+Td
✓
(⇠ + (1 � P(t⇠ < TK ))t̄h) (11)

So, (9) becomes:

t̄s,max = Td � (1 + lp)(
Dx
Rx

+ Dr
Rr

)

� Td
✓
(⇠ + (1 � P(t⇠ < TK ))t̄h) (12)

Now, let us consider the general case where the detec-
tion period may be different to the data sample collection
period Tc. So, Tc = aTd , a 2 (0, 1]. If a = 1, the detection
mechanism runs often enough to ensure complete coverage of
time, while a < 1means that the mechanism covers a fraction
of the time and an attack may be missed if it occurs outside
this fraction. Substituting Td by Tc

a , (12) yields:

t̄s,max = Tc
a

� (1 + lp)(
Dx
Rx

+ Dr
Rr

)

� Tc
a✓

(⇠ + (1 � P(t⇠ < TK ))t̄h) (13)

We evaluate our mathematical model experimentally by
emulating multiple network scenarios to determine the prac-
ticality of cloud-based intrusion detection and its associated
performance over different network conditions; for this we
have used the wide area network emulator WANem [58].
WANem enables the design and development of a vari-
ety of network scenarios and has been utilised in multi-
ple research studies for the evaluation of defences against
cyber attacks against critical infrastructures [59], lightweight

3504 VOLUME 6, 2018



G. Loukas et al.: Cloud-Based Cyber-Physical Intrusion Detection for Vehicles Using Deep Learning

FIGURE 13. t̄s,max against different values of a for the four network configurations.

TABLE 6. Network scenarios used in experiments and by mathematical
model.

security schemes for vehicle tracking [60], and wide area
network emulation for testing automated covert channel
modelling [61].

To form a realistic set of cloud-based offloading sce-
narios that form the basis of our experimental testing, we
configure WANem with representative network latency
parameters from different network types. For network 1,
we use the existing lab test-bed server to present a LAN-based
server. Network 2 represents an ideal cloud service, profiled
by measuring real cloud services via the cloudharmony2 web
service. The network latency results were used to determine a
baseline average transmission delay from London (the exper-
iment test-bed location) to Google Compute Engine cloud
platform for the round-trip time (RTT) of a HTTPS GET
request. For network 3, we have utilised the performance
statistics from the 2014 OFcom mobile broadband study in
the UK [62]; providing an accurate measurement of latency
for a typical 4g/3g network service. Network 4 represents
a highly unstable network with a high packet loss, frequent
connectivity failures and increased latency. Table 6 provides
each set of configuration parameters defined in the WANem
configuration for each of the network scenarios in the detec-
tion offloading experiment.

Figure 12 shows the comparison betweenmodel and exper-
iment for the four network configurations specified in terms
of the detection latency. Our experimentation for each case
involved five runs, each 300 s of continuous offloaded detec-
tion with Td = Tc = 1s. Here, we report the mean detection

2https://cloudharmony.com/speedtest

latency values. For network configurations 1-3, the model’s
estimation is very close to the actual detection latency values
obtained via the experiments. In the case of the very unre-
liable network (network configuration 4), the model is less
accurate (off by 15-33%), mainly because it assumes that a
network returns to its healthy state immediately after recovery
and handshakes. In practice, some residual delays may occur
in highly congested networks. Nevertheless, we have found
that the model’s accuracy in reasonably reliable networks
is excellent and can be used to take offloading decisions
(whether detection should run onboard or offloaded).
For a more clear view of the evaluation of the mathematical

model across different scales, we have extended experimen-
tation to lower numbers of neurons too (20 and 200). Note
that the observations below hold only for the specific process-
ing power of the vehicle (and hence processing delays) we
worked with. Naturally, for a more powerful vehicle, offload-
ing will be practical only for a larger number of neurons, and
for a less powerful one, it will be practical for a smaller num-
ber of neurons. It is beyond the scope of this paper to predict
processing delay based on processing resources. We consider
the processing delays as input to the model. Both model and
experimental evaluation agree that, from the perspective of
mean detection latency, offloading detection via networks
1 and 2 is preferable to running it onboard, if the deep learning
architecture includes 200 neurons and above. This number
increases to approximately 600 neurons for network 3. With
the same criterion of reducing detection latency, it is never
practical to offload detection via network 4 in any of the cases
evaluated (between 20 and 1000 neurons).
As we are satisfied with the accuracy of the model in

enabling offloading decisions, we can utilise it to estimate
configuration parameters that render it practical, in terms of
achieving detection latency that is lower than the onboard
(local) case, as above, or lower than the Td . Figure 13 illus-
trates the latter. Specifically, it shows ts,max as represented
in equation 13, for different values for a in the four network
configurations.
We observe that out of the four network configurations

utilised, only the fourth, which corresponds to the least

VOLUME 6, 2018 3505



G. Loukas et al.: Cloud-Based Cyber-Physical Intrusion Detection for Vehicles Using Deep Learning

reliable network, would be impractical for offloading the task
of continuous deep learning based intrusion detection. For the
cloud infrastructure used in our experiments, themean time to
complete the processing t̄s was 0.279 s for the 1000-neuron
case and lower for the other cases. So, offloading was not
only practical, but also preferable for reducing overall delay
in networks 1-3.

However, for network 4, t̄s,max would drop below 0,making
it impractical for coverage ratio a above 0.4 regardless of
the processing power of the remote infrastructure. Naturally,
reducing a, increases ts,max , but also increases the likeli-
hood that particularly short-duration attacks with no lasting
cyber or physical impact may be missed by the detection
process altogether if not captured within the time periods
covered.

VII. CONCLUSION
We have shown experimentally that utilising RNN-based
deep learning enhanced by LSTM can increase consider-
ably intrusion detection accuracy for a robotic vehicle, when
comparing against standard machine learning classifiers or
MLP-based deep learning, which cannot take into account
the temporal elements of a cyber attack. We have also shown
that the key disadvantage of a deep learning based approach,
which is detection latency due to the increased processing
demands, can be addressed through cloud-based computa-
tional offloading. For this, we produced a practical implemen-
tation and have also presented and validated experimentally a
mathematical model for evaluating when offloading is prac-
tical from the detection latency perspective.

However, we also need to consider that there is a fun-
damental difference between running a cyber security task
(such as intrusion detection) onboard the vehicle or offloaded
remotely, which is the reliance on an external communication
network, not only in terms of its availability and performance,
but also its security. For vehicles, this is particularly true
because, in almost all realistic cases, offloading needs to be
carried out via a wireless medium, and consequently is vul-
nerable to security threats itself. The security of the wireless
medium was not within scope here, but needs to be taken into
account in real-world deployment of such an approach. For
this work, we have utilised HTTPS as a means to provide a
satisfactory level of confidentiality and integrity of the pro-
cess, but have not taken anymeasures against a physical avail-
ability threat, such as communication jamming. A reasonable
approach here would be to resort to a lightweight machine
learning classifier, such as logistic regression, random for-
est or SVM, for as long as the vehicle is in a communication-
denied environment, whether naturally or as a result of an
attack on the wireless medium.

Further considerations are the availability, cost and secu-
rity of the remote infrastructure used for offloading. Here,
we have used a trusted private cloud, but other options could
be using another, resource-rich vehicle (for example, when
operating within a platoon of driverless vehicles), which
may itself have been compromised, or extend to potentially

‘‘unfaithful’’ clouds. For the latter, there is excellent work
being produced in the area of secure computation offload-
ing [63], [64], which could be adopted in this context too.
As for the cost of offloading, it could be monetary or energy-
related, both being interesting directions of further research.
Perhaps the greatest advantage of offloading is the poten-

tial of having a common cloud-based infrastructure that can
be used by a large number of vehicles of different owners,
operational patterns and environments. This would allow col-
lecting data regarding the normal or attack behaviour of a
type of vehicle much more widely than in the limited condi-
tions experienced during the training of the IDS of a single
vehicle. There is also a strategic strength in this direction
of research. Both deep learning and cloud security are areas
of considerable activity. By positioning this work where the
two meet, the approach of cloud offloading of deep learning
based intrusion detection will benefit further in the future by
advances in these two fields.

REFERENCES
[1] G. Loukas, Cyber-Physical Attacks: A Growing Invisible Threat. Oxford,

U.K: Butterworth-Heinemann, 2015.
[2] K. Koscher et al., ‘‘Experimental security analysis of a modern automo-

bile,’’ in Proc. IEEE Security Privacy, May 2010, pp. 447–462.
[3] S. Checkoway et al., ‘‘Comprehensive experimental analyses of automo-

tive attack surfaces,’’ in Proc. Usenix Secur. Symp., Aug. 2011, p. 6.
[4] D. Ward, I. Ibarra, and A. Ruddle, ‘‘Threat analysis and risk assessment

in automotive cyber security,’’ Int. J. Passenger Cars, vol. 6, no. 2,
pp. 507–513, 2013.

[5] M. Ring, J. Dürrwang, F. Sommer, and R. Kriesten, ‘‘Survey on vehicular
attacks—Building a vulnerability database,’’ in Proc. IEEE Int. Conf. Veh.
Electron. Safety (ICVES), Nov. 2015, pp. 208–212.

[6] A. Y. Javaid, W. Sun, V. K. Devabhaktuni, and M. Alam, ‘‘Cyber secu-
rity threat analysis and modeling of an unmanned aerial vehicle sys-
tem,’’ in Proc. IEEE Conf. Technol. Homeland Secur. (HST), Nov. 2012,
pp. 585–590.

[7] G. McGraw, ‘‘Cyber war is inevitable (unless we build security in),’’
J. Strategic Stud., vol. 36, no. 1, pp. 109–119, 2013.

[8] A. J. Kerns, D. P. Shepard, J. A. Bhatti, and T. E. Humphreys, ‘‘Unmanned
aircraft capture and control via GPS spoofing,’’ J. Field Robot., vol. 31,
no. 4, pp. 617–636, 2014.

[9] J. Petit and S. Shladover, ‘‘Potential cyberattacks on automated vehicles,’’
IEEE Trans. Intell. Transp. Syst., vol. 16, no. 2, pp. 546–556, Feb. 2015.

[10] Y. Son et al., ‘‘Rocking drones with intentional sound noise on gyroscopic
sensors,’’ in Proc. 24th USENIX Secur. Symp., 2015, pp. 881–896.

[11] T. Vuong, A. Filippoupolitis, G. Loukas, and D. Gan, ‘‘Physical indicators
of cyber attacks against a rescue robot,’’ in Proc. IEEE Int. Conf. Pervasive
Comput. Commun., Mar. 2014, pp. 338–343.

[12] A. Greenberg, ‘‘Hackers remotely kill a jeep on the highway—With me in
it,’’ Wired, vol. 7, p. 21, Jul. 2015.

[13] A. Bezemskij, R. J. Anthony, G. Loukas, and D. Gan, ‘‘Threat evaluation
based on automatic sensor signal characterisation and anomaly detection,’’
in Proc. 12th Int. Conf. Auton. Auto. Syst. (ICAS), 2016.

[14] A. Bezemskij, G. Loukas, R. J. Anthony, and D. Gan, ‘‘Behaviour-based
anomaly detection of cyber-physical attacks on a robotic vehicle,’’ in Proc.
8th Int. Symp. Cyberspace Safety Secur., 2016, pp. 61–68.

[15] T. P. Vuong, G. Loukas, and D. Gan, ‘‘Performance evaluation of cyber-
physical intrusion detection on a robotic vehicle,’’ in Proc. 13th Int. Conf.
Pervasive Intell. Comput. (PICOM), Oct. 2015, pp. 2106–2113.

[16] T. P. Vuong, G. Loukas, D. Gan, and A. Bezemskij, ‘‘Decision tree-
based detection of denial of service and command injection attacks on
robotic vehicles,’’ in Proc. 7th Int. Workshop Inf. Forensics Secur. (WIFS),
Nov. 2015, pp. 1–6.

[17] K.-T. Cho and K. G. Shin, ‘‘Viden: Attacker identification on in-vehicle
networks,’’ in Proc. 24th ACM Conf. Comput. Commun. Secur. (CCS),
2016, pp. 164–170.

3506 VOLUME 6, 2018



G. Loukas et al.: Cloud-Based Cyber-Physical Intrusion Detection for Vehicles Using Deep Learning

[18] M. R. Moore, R. A. Bridges, F. L. Combs, M. S. Starr, and S. J. Prowell,
‘‘Modeling inter-signal arrival times for accurate detection of can bus
signal injection attacks: A data-driven approach to in-vehicle intrusion
detection,’’ in Proc. 12th Annu. Conf. Cyber Inf. Secur. Res., 2017, p. 11.

[19] F. Martinelli, F. Mercaldo, V. Nardone, and A. Santone, ‘‘Car hacking
identification through fuzzy logic algorithms,’’ in Proc. IEEE Int. Conf.
Fuzzy Syst. (FUZZ-IEEE), Jul. 2017, pp. 1–7.

[20] A. Lauf, R. Peters, and W. Robinson, ‘‘A distributed intrusion detection
system for resource-constrained devices in ad-hoc networks,’’ Ad Hoc
Netw., vol. 8, no. 3, pp. 253–266, 2010.

[21] M. Strohmeier, V. Lenders, and I. Martinovic, ‘‘Intrusion detection for
airborne communication using PHY-layer information,’’ in Proc. 12th
Conf. Detection Intrusions Malware Vulnerability Assessment (DIMVA),
2015, pp. 67–77.

[22] Z. Birnbaum, A. Dolgikh, V. Skormin, E. O’Brien, and D. Müller,
‘‘Unmanned aerial vehicle security using recursive parameter estimation,’’
in Proc. Int. Conf. Unmanned Aircraft Syst. (ICUAS), 2014, pp. 692–702.

[23] C. Gwak, M. Jo, S. Kwon, H. Park, and S. Son, ‘‘Anomaly detection
based on recursive least-square filter for robust intelligent transporta-
tion systems,’’ in Proc. Korea Inst. Commun. Sci. Summer Conf., 2015,
pp. 438–440.

[24] J. Schumann, P. Moosbrugger, and K. Y. Rozier, ‘‘R2u2: Monitoring and
diagnosis of security threats for unmanned aerial systems,’’ in Proc. 15th
Int. Conf. Runtime Verification, 2015, pp. 233–249.

[25] A. Bezemskij, G. Loukas, D. Gan, and R. Anthony, ‘‘Detecting cyber-
physical threats in an autonomous robotic vehicle using Bayesian net-
works,’’ inProc. IEEECyber, Phys. Social Comput. (CPSCom), Aug. 2017,
pp. 1–6.

[26] G. Pearson and M. Kolodny, ‘‘U.K. MoD land open systems architec-
ture and coalition interoperability with the U.S.,’’ Proc. SPIE, vol. 8742,
p. 87420C, May 2013.

[27] R. Mitchell and I. Chen, ‘‘Specification based intrusion detection for
unmanned aircraft systems,’’ in Proc. 1st ACM MobiHoc Workshop Air-
borne Netw. Commun., 2012, pp. 31–36.

[28] R. Mitchell and I.-R. Chen, ‘‘Adaptive intrusion detection of malicious
unmanned air vehicles using behavior rule specifications,’’ IEEE Trans.
Syst., Man, Cybern., Syst., vol. 44, no. 5, pp. 593–604, May 2014.

[29] S. Martini et al., ‘‘Distributed motion misbehavior detection in teams
of heterogeneous aerial robots,’’ Robot. Auto. Syst., vol. 74, pp. 30–39,
Dec. 2015.

[30] L. Lamport, R. Shostak, andM. Pease, ‘‘The Byzantine generals problem,’’
ACM Trans. Program. Lang. Syst., vol. 4, no. 3, pp. 382–401, Jul. 1982.

[31] K. Alheeti, A. Gruebler, and K. McDonald-Maier, ‘‘An intrusion detection
system against malicious attacks on the communication network of driver-
less cars,’’ in Proc. 12th Consum. Commun. Netw. Conf. (CCNC), 2015,
pp. 916–921.

[32] K. M. A. Alheeti and K. McDonald-Maier, ‘‘An intelligent intrusion detec-
tion scheme for self-driving vehicles based on magnetometer sensors,’’ in
Proc. Int. Conf. Students Appl. Eng. (ICSAE), 2016, pp. 75–78.

[33] K. M. A. Alheeti, R. Al-Zaidi, J. Woods, and K. McDonald-Maier, ‘‘An
intrusion detection scheme for driverless vehicles based gyroscope sensor
profiling,’’ in Proc. IEEE Int. Conf. Consum. Electron. (ICCE), Jan. 2017,
pp. 448–449.

[34] K.M. A. Alheeti, A. Gruebler, and K.McDonald-Maier, ‘‘Intelligent intru-
sion detection of grey hole and rushing attacks in self-driving vehicular
networks,’’ Computers, vol. 5, no. 3, p. 16, 2016.

[35] G. Hu, W. P. Tay, and Y. Wen, ‘‘Cloud robotics: Architecture, chal-
lenges and applications,’’ IEEE Netw., vol. 26, no. 3, pp. 21–28,
May/Jun. 2012.

[36] A. Houmansadr, S. A. Zonouz, and R. Berthier, ‘‘A cloud-based intrusion
detection and response system for mobile phones,’’ in Proc. IEEE/IFIP
41st Int. Conf. Dependable Syst. Netw. Workshops, Jun. 2011, pp. 31–32.

[37] G. Portokalidis, P. Homburg, K. Anagnostakis, and H. Bos, ‘‘Paranoid
Android: Versatile protection for smartphones,’’ in Proc. 26th Annu.
Comput. Secur. Appl. Conf., 2010, pp. 347–356.

[38] W. Hardy, L. Chen, S. Hou, Y. Ye, and X. Li, ‘‘DL4MD: A deep learning
framework for intelligent malware detection,’’ in Proc. Int. Conf. Data
Mining (DMIN), 2016, p. 61.

[39] Z. Dong, K. Kane, and L. Camp, ‘‘Detection of rogue certificates from
trusted certificate authorities using deep neural networks,’’ Trans. Privacy
Secur., vol. 19, no. 2, p. 5, 2016.

[40] J. Kim, J. Kim, H. L. T. Thu, and H. Kim, ‘‘Long short term memory
recurrent neural network classifier for intrusion detection,’’ in Proc. Int.
Conf. Platform Technol. Service (PlatCon), 2016, pp. 1–5.

[41] A. Y. Javaid, Q. Niyaz, W. Sun, and M. Alam, ‘‘A deep learning
approach for network intrusion detection system,’’ in Proc. 9th EAI
Int. Conf. Bio-Inspired Inf. Commun. Technol. (BIONETICS), 2016,
pp. 21–26.

[42] J.-W. Kang and M.-J. Kang, ‘‘Intrusion detection system using deep neural
network for in-vehicle network security,’’ PLoS ONE, vol. 11, no. 6,
p. e0155781, 2016.

[43] T. P. Vuong, ‘‘Cyber-physical intrusion detection for robotic vehicles,’’
Ph.D. dissertation, Dept. Comput. Inf. Syst., Univ. Greenwich, London,
U.K., 2017.

[44] T. G. Barbounis, J. B. Theocharis, M. C. Alexiadis, and
P. S. Dokopoulos, ‘‘Long-term wind speed and power forecasting
using local recurrent neural network models,’’ IEEE Trans. Energy
Convers., vol. 21, no. 1, pp. 273–284, Mar. 2006.

[45] Y. Du, W. Wang, and L. Wang, ‘‘Hierarchical recurrent neural network
for skeleton based action recognition,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2015, pp. 1110–1118.

[46] Y. Bengio, P. Simard, and P. Frasconi, ‘‘Learning long-term dependencies
with gradient descent is difficult,’’ IEEE Trans. Neural Netw., vol. 5, no. 2,
pp. 157–166, Mar. 1994.

[47] F. Chollet. (2015). Keras. [Online]. Available: https://github.
com/fchollet/keras

[48] M. Fernandez-Delgado, E. Cernadas, S. Barro, and D. Amorim, ‘‘Do
we need hundreds of classifiers to solve real world classification
problems,’’ J. Mach. Learn. Res, vol. 15, no. 1, pp. 3133–3181,
2014.

[49] M. A. M. Hasan, M. Nasser, B. Pal, and S. Ahmad, ‘‘Support vec-
tor machine and random forest modeling for intrusion detection system
(IDS),’’ J. Intell. Learn. Syst. Appl., vol. 6, no. 1, p. 45, 2014.

[50] Y. Wang, J. Wong, and A. Miner, ‘‘Anomaly intrusion detection using one
class SVM,’’ in Proc. 15th Annu. IEEE SMC Inf. Assurance Workshop,
2004, pp. 358–364.

[51] G. Giacinto, R. Perdisci, F. Roli, and M. D. Rio, ‘‘Intrusion detection in
computer networks by a modular ensemble of one-class classifiers,’’ Inf.
Fusion, vol. 9, no. 1, pp. 69–82, 2008.

[52] M. Jianliang, S. Haikun, and B. Ling, ‘‘The application on intrusion
detection based on k-means cluster algorithm,’’ in Proc. Int. Forum Inf.
Technol. Appl. (IFITA), 2009, pp. 150–152.

[53] Ubuntu OpenStack Reference Implementation, Canonical, London, U.K.,
Oct. 2014.

[54] D. Stenberg. (2016). Curl. [Online]. Available: https://curl.haxx.se/
[55] A. Canziani, A. Paszke, and E. Culurciello. (2016). ‘‘An analysis of deep

neural network models for practical applications.’’ [Online]. Available:
https://arxiv.org/abs/1605.07678

[56] K. Kumar and Y.-H. Lu, ‘‘Cloud computing for mobile users: Can
offloading computation save energy?’’ Computer, vol. 43, no. 4,
pp. 51–56, Apr. 2010.

[57] G. Loukas, Y. Yoon, G. Sakellari, T. Vuong, and R. Heartfield, ‘‘Computa-
tion offloading of a vehicle’s continuous intrusion detection workload for
energy efficiency and performance,’’ Simul. Model. Pract. Theory, vol. 73,
pp. 83–94, Apr. 2017.

[58] H. K. Kalitay and M. K. Nambiarz, ‘‘DesigningWANem: A wide area net-
work emulator tool,’’ in Proc. 3rd Int. Conf. Commun. Syst. Netw. (COM-
SNETS), 2011, pp. 1–4.

[59] L. Aniello, G. Di Luna, G. Lodi, and R. Baldoni, ‘‘A collaborative
event processing system for protection of critical infrastructures from
cyber attacks,’’ in Proc. Int. Conf. Comput. Safety, Rel., Secur., 2011,
pp. 310–323.

[60] A. Ukil, S. Bandyopadhyay, A. Bhattacharyya, and A. Pal, ‘‘Lightweight
security scheme for vehicle tracking system using coap,’’ in Proc. Int.
Workshop Adapt. Secur., 2013, Art. no. 3.

[61] F. Rezaei, M. Hempel, H. Shrestha, and P. L. Sharif, ‘‘Evaluation and
verification of automated covert channel modeling using a real network
platform,’’ in Proc. IEEE Military Commun. Conf., 2014, pp. 12–17.

[62] OFcom. (2014). Measuring Mobile Broadband Performance in the
UK: 4G and 3G Network Performance. [Online]. Available: https://
www.ofcom.org.uk/_data/assets/pdf_file/0014/32054/mbb-nov14.pdf

[63] R. Gennaro, C. Gentry, and B. Parno, ‘‘Non-interactive verifiable com-
puting: Outsourcing computation to untrusted workers,’’ in Advances
in Cryptology-CRYPTO (Lecture Notes in Computer Science). Berlin,
Germany: Springer, 2010, pp. 465–482.

[64] X. Chen, X. Huang, J. Li, J. Ma, W. Lou, and D. Wong, ‘‘Rocking drones
with intentional sound noise on gyroscopic sensors,’’ IEEE Trans. Inf.
Forensics Security, vol. 10, no. 1, pp. 69–78, Jan. 2015.

VOLUME 6, 2018 3507



G. Loukas et al.: Cloud-Based Cyber-Physical Intrusion Detection for Vehicles Using Deep Learning

GEORGE LOUKAS received the Ph.D. degree
in network security from the Imperial College
London. He is currently a Principal Investigator
of several international research projects related to
the security of smart homes, Internet of Things,
autonomous vehicles, and human-as-a-sensor sys-
tems. He has over 60 journal and conference pub-
lications. His book on cyber-physical attacks was
included in ACM’s top ten list in the computing
milieux category of 2015. He is on the editorial

board of the BCS Computer Journal and Elsevier’s Simulation Modelling
Practice and Theory.

TUAN VUONG received the degree in computer
science from DePauw University, Indiana, USA,
and the M.Sc. and Ph.D. degrees in computer
security from the University of Greenwich. He is
currently a Lecturer with the Department of Com-
puting and Information Systems, University of
Greenwich. His research interests include intru-
sion detection, cyber-physical security, machine
learning, and deep learning techniques.

RYAN HEARTFIELD received the Ph.D. degree
in cyber security from the University of
Greenwich. He is currently a Research Asso-
ciate in cyber security with the University of
Greenwich. He is currently involved in multiple
U.K. and European Research Projects in cyberse-
curity, ranging from the security of autonomous
vehicles, measuring the trustworthiness of human
sensor platforms, and studying cyber threats and
the emotional impact of security breaches in smart

home environments. His research interests include semantic social engi-
neering threats, cyber physical attacks, software-defined networks, cloud
computing, and network security.

GEORGIA SAKELLARI received theM.Sc. degree
(MBA) in techno-economic systems, the M.Eng.
degree in electrical and computer engineering
fromNTUA, Greece, and the Ph.D. degree in com-
puter networks from the Imperial College Lon-
don in 2009. She is currently a Senior Lecturer
in disruptive technologies with the University of
Greenwich. She is on the editorial board of Else-
vier’s Simulation Modelling Practice and The-
ory. Her research interests include computational

offloading, edge computing, cloud computing, and network quality of service
and security.

YONGPIL YOON received the B.Sc. degree in
computer science from the King’s College Lon-
don in 2012 and the M.Sc. degree in computer
and network security in 2014. His research inter-
ests include cloud computing and energy efficient
computing.

DIANE GAN received the Ph.D. degree in commu-
nications from the University of Greenwich. She
is currently a Principal Lecturer, Co-Founder, and
the Director of the C-SAFE Group, University
of Greenwich. He is a Chartered Engineer and a
member of IET, the BCS, and ISSG. Her research
interests include digital forensics, social media
security and privacy, network security, and com-
puter communications.

3508 VOLUME 6, 2018


	INTRODUCTION
	RELATED WORK
	CONTRIBUTIONS
	CYBER-PHYSICAL INTRUSION DETECTION USING DEEP LEARNING
	EXPERIMENTAL METHODOLOGY
	TESTBED: ROBOTIC VEHICLE
	FEATURES
	ATTACKS USED IN TRAINING THE MODEL
	EXPERIMENTAL DEEP LEARNING RESULTS
	PERFORMANCE AGAINST PREVIOUSLY SEEN TYPES OF ATTACKS
	EVALUATING THE DEEP LEARNING IDS ON AN UNSEEN TYPE OF ATTACK


	OFFLOADING INTRUSION DETECTION
	TESTBED: CLOUD-BASED IDS
	THE NETWORKING CONFIGURATION OF OFFLOADING
	EVALUATING THE PRACTICALITY OF OFFLOADING DETECTION

	CONCLUSION
	REFERENCES
	Biographies
	GEORGE LOUKAS
	TUAN VUONG
	RYAN HEARTFIELD
	GEORGIA SAKELLARI
	YONGPIL YOON
	DIANE GAN


