
Demonstrating Cognitive Packet Network Resilience to
Worm Attacks

Georgia Sakellari
Imperial College London

Intelligent Systems & Networks Group
Dept of Electrical & Electronic Engineering

SW7 2BT, London, UK
g.sakellari@imperial.ac.uk

Erol Gelenbe
Imperial College London

Intelligent Systems & Networks Group
Dept of Electrical & Electronic Engineering

SW7 2BT, London, UK
e.gelenbe@imperial.ac.uk

ABSTRACT

The need for network stability and reliability has led to the
growth of autonomic networks [2] that can provide more sta-
ble and more reliable communications via on-line measure-
ment, learning and adaptation. A promising architecture is
the Cognitive Packet Network (CPN) [5] that rapidly adapts
to varying network conditions and user requirements using
QoS driven reinforcement learning algorithms that drive the
routing control. Contrary to conventional mechanisms, the
users rather than the nodes, control the routing by specifying
their desired QoS requirements (QoS Goals), such as Min-
imum Delay, Maximum Bandwidth, Minimum Cost, etc.,
and the network then routes each user’s traffic individually
based on their specific needs and on a“glocal”view. In CPN
the user has the ability to explore the network for its own
needs, and evaluate its own impact on the network as a whole
and vice-versa, and then take appropriate decisions. CPN
routing has been evaluated extensively under normal operat-
ing conditions and has proven to be very adaptive to network
changes such as congestion. Here we show how CPN can re-
spond and survive to catastrophic node failures caused by
the spread of network worms. This survival is based on two
complementary approaches that are run concurrently: one
the one hand, each user attempts to concurrently and adap-
tively avoid paths which are infected, and secondly patching
algorithms are continuously run to repair the network. Ex-
periments show that this approach assures the stability of
network communications throughout the course of an at-
tack.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Fault tolerance, Reli-
ability; C.2.2 [Network Protocols]: Routing protocols;
K.6.5 [Security and Protection]: Invasive software (e.g.,
viruses, worms, Trojan horses)

General Terms

Measurement, Performance, Reliability

Keywords

Reliability, Routing protocols, Cognitive packet network,
Self-aware networks, Network worms

Copyright is held by the author/owner(s).
CCS’10, October 4–8, 2010, Chicago, Illinois, USA.
ACM 978-1-4503-0244-9/10/10.

1. THE COGNITIVE PACKET NETWORK
(CPN)

CPN routing [9, 11, 10, 6, 4, 5, 21] was designed to perform
self-improvement by learning from the experience of special
“smart packets” (SPs) that constantly probe the network. In
addition to SPs that are used for discovery, CPN also uses
source routed dumb packets (DP) to carry the payload, and
acknowledgement (ACK) packets to bring back information
that has been discovered by SPs. This information brought
back by ACKs is used in nodes to train neural networks via
a Reinforcement Learning (RL) algorithm that has a rela-
tively short memory to produce routing decisions. The role
of SPs is to explore the network and discover the best routes,
according to a QoS goal, for each source-destination pair in
the network. At each hop SPs are routed according to the
experiences of previous packets with the same goals and the
same destination. The term “goal” is used instead of “QoS
specifications” to emphasize the fact that there are no QoS
guarantees and that CPN provides a best effort service [22].
The decisions of the SPs are based on a learning algorithm.
In order to explore all possible routes, at some hops, each
SP makes a random routing decision, with a small probabil-
ity (usually 5%). To avoid overburdening the system with
unsuccessful requests or packets which are in effect lost, all
packets have a life-time constraint based on the number of
nodes they have visited.

Several algorithms have been used in CPN as learning
and decision techniques in order for SPs to find satisfactory
routes from source to destination based on the desired goals.
As far as the decision process is concerned, Random Neural
Networks (RNNs) [3] are mainly used. The RNN is a biolog-
ically inspired model which is characterised by the existence
of positive (excitation) and negative (inhibition) signals in
the form of spikes of unit amplitude that circulate among
neurons and alter the potential of the neurons. Each neuron
can be connected to another neuron and each connection is
characterized by an excitatory or inhibitory weight [15]. The
state of a neuron, which represents the probability that the
neuron is excited, satisfies a system of nonlinear equations
with a unique solution. Therefore, in a CPN network, at
each node a specific RNN that has as many neurons as the
possible outgoing links, represents the decision to choose a
given output link for a SPs. The arrival of SPs triggers the
execution of RNN and the routing decision is the output link
corresponding to the most excited neuron.

The learning algorithm that was designed into CPN is Re-
inforcement Learning (RL); this resulted from prior studies



of the routing of autonomous mobile agents in a dangerous
landscape [15]. RL is used to change synaptic weights in
order to reward or punish a neuron according to the level
of goal satisfaction measured on the corresponding output.
Therefore the decisional weights of a RNN are increased or
decreased based on the observed success or failure of subse-
quent SPs to achieve the goal. Thus RL will tend to prefer
better routing schemes, more reliable access paths and bet-
ter QoS.

The CPN has been shown to be effective for a variety of
uses [21], including traffic balancing [13], power-based rout-
ing in mobile ad hoc networks [8] and admission control (AC)
[14]. From the security aspect, the authors of [7] investi-
gated the application of defence techniques on the resilience
of the CPN against DoS attacks. They introduced a generic
framework of DoS protection based on the dropping of prob-
able illegitimate traffic, and presented a mathematical model
with which one can measure the impact that both attack
and defence have on the performance of a network. Their
CPN-based distributed DoS defence technique exploits the
ability of the CPN to trace traffic going both downstream
and upstream, owing to SPs and ACK packets. When a
node detects an attack, it uses the ACKs to ask all interme-
diate nodes upstream to drop the packets of the attack flow.
Each node is allowed to select the maximum bandwidth that
it will accept from any flow that terminates at the node and
the maximum bandwidth that it allocates to a flow that tra-
verses the node. These parameters may vary dynamically as
a result of other conditions, and they can also be selected
based on the identity and the QoS needs of the flows. When
a node receives an SP or DP from a flow that it has not previ-
ously encountered (e.g. with a new source–destination pair,
or a new QoS class), it sends a Flow-ACK packet back to
the source along the reverse path and informs the source of
its bandwidth allocation. The node monitors the flows that
traverse it and drops packets of any flow that exceeds the al-
location; it may also inform upstream nodes that packets of
this flow should be dropped. Other possible actions include
diverting the flow into a ‘honeypot’ or to a special network.
This generic defence was further improved by using prior-
itization and rate-limiting instead of simple dropping [12,
19]. The same authors have also introduced a DoS detec-
tion mechanism that makes use of on-line statistics collected
by the CPN protocol’s monitoring system and fused them
with a RNN [18]. More analytically, the scheme uses input
features to capture both the instantaneous behaviour and
the longer-term statistical properties of the traffic. In an
off-line information gathering step, it obtains the probabil-
ity density function, estimates and evaluates the likelihood
ratios for the input features. During the real-time decision
step it measures and calculates the features of the incom-
ing traffic, finds the likelihood ratios corresponding to those
values and aggregates these likelihood values using an RNN.
The overall architecture outputs a numerical value that is a
measure of having an on-going attack in the network, which
is consequently used in the prioritization and rate-limiting
mechanisms previously mentioned [20, 17].

2. EMULATING NETWORK WORMS
Network worms are malicious self-replicating and self- prop-

agating applications that exploit the system vulnerabilities
of some operating systems and spread through networks.
Their defining characteristic is their ability to achieve high

infection rates; they can spread and saturate a network very
quickly. The results of such attacks could be mild, such
as a printout of a message or more serious such as deleting
or modifying system files, reducing system performance, or
causing total failure to the infected machines. From the ser-
vice quality perspective and according to the extent of the
spread, the latter can lead to serious disruption for the users
of the network, due to information loss and delays.

Emulating network worms in a controlled and reproducible
manner is vital for the evaluation of the resilience of a net-
work to such scenarios. For this reason we have developed
such an emulator in which the infection of a worm causes a
network node to fail. This is achieved by disabling all Ether-
net interfaces of a node which are connected to the network,
so that no traffic can go through that node. The failure
can then be restored by re-enabling these interfaces. The
failure propagation can be random, according to a proba-
bility distribution or a pattern. Here, we consider failures
that propagate as a computer worm that tries to infect a
network’s nodes. Specifically, the failure is spread according
to an epidemiological model, the AAWP (Analytical Active
Worm Propagation) model. This is a discrete-time and con-
tinuous state deterministic approximation model, proposed
by Chen et al. to model the spread of active worms that
employ random scanning [1]. In the AAWP model, a node
can be in one of the following states: infected, immunised,
vulnerable. In our present application we have assumed that
all hosts can reach (infect or immunise) each other directly
(the topology of the network is irrelevant). At each scan,
the “worm” randomly chooses another host of the popula-
tion and if it is immune nothing happens. If it is vulnerable
it becomes infected and if it is already infected, it does not
get re-infected. We assume that the infection delay time
between two consecutive infection attempts represents the
time required by a computer worm to find a server through
random IP scans, regardless of whether the host is already
infected or still vulnerable. So, a computer cannot infect
other hosts before it is infected completely. In our implemen-
tation, the time the worm needs to infect a machine, called
the infection delay time, is a random value within a prede-
termined range, but the emulator could be extended so that
the infection delay time could be subtracted by a more com-
plex model which takes into account the distance between
the infected node and the node it tries to infect, the degree
of network congestion and other such parameters. When
a node is infected it is considered under failure but it can
still infect others. Finally, in order to capture the patching
impact on the worm propagation, we dynamically immunise
some hosts, which, after some time, start immunising others
(infected or simply vulnerable) randomly. The time a newly
immunised node has to wait before it starts immunising oth-
ers is again a random value. The scanning mechanism used
is the random scanning mechanism but others could be used,
such as local subnet and topological scanning.

3. OUR PROPOSED DEMO
Our demonstration will present videos of real-time exper-

iments, conducted in a 46 node testbed located at Impe-
rial College London, under different traffic conditions. The
topology of the testbed represents the real SWITCHlan net-
work topology (the Swiss Education & Research Network
(SWITCHlan) network provides service in Switzerland to
all universities, two federal institutes of technology and the



major research institutes, 1. In order to make the environ-
ment more realistic we used actual details of the 46-router
backbone, complete with bandwidth, OSPF costs, and link-
level delays which were given by the administrators of the
SwitchLAN network to the authors of [16].

The scope of our proposed demo is to demonstrate the re-
sponse and stability of CPN under emulated worm spreads
and intermittent failures generated by a failure emulator
mechanism, in which failure spread is modelled according to
the AAWP (Analytical Active Worm Propagation) model.
We will show that CPN adapts quickly to failures, without
significantly decreasing the measured QoS provided to the
users of the network.

4. REFERENCES

[1] Z. Chen, L. Gao, and K. Kwiat. Modeling the Spread
of Active Worms. In Proceedings of the IEEE
INFOCOM 2003, volume 3, pages 1890–1900, San
Francisco, CA, USA, Apr. 2003.

[2] S. Dobson, S. Denazis, A. Fernández, D. Gäıti,
E. Gelenbe, F. Massacci, P. Nixon, F. Saffre,
N. Schmidt, and F. Zambonelli. A survey of
autonomic communications. ACM Trans. Adapt.
Autonomous Systems (TAAS), 1(2):223–259, 2006.

[3] E. Gelenbe. Random Neural Networks with Negative
and Positive Signals and Product Form Solution.
Neural computation, 1(4):502–510, 1989.

[4] E. Gelenbe. Cognitive Packet Network. US Patent,
6804201 B1, Oct. 2004.

[5] E. Gelenbe. Steps towards self-aware networks.
Communications of the ACM, 52(7):66–75, July 2009.

[6] E. Gelenbe, M. Gellman, R. Lent, P. Liu, and P. Su.
Autonomous Smart Routing for Network QoS. In
Proceedings of the First International Conference on
Autonomic Computing (ICAC), pages 232–239, New
York, NY, USA, May 2004.

[7] E. Gelenbe, M. Gellman, and G. Loukas. An
Autonomic Approach to Denial of Service Defence. In
Proceedings of First International IEEE WoWMoM
Workshop on Autonomic Communications and
Computing (ACC’05), pages 537–541, Taormina, Italy,
June 2005.

[8] E. Gelenbe and R. Lent. Power-aware ad hoc cognitive
packet networks. Ad Hoc Networks Journal,
2(3):205–216, July 2004.

[9] E. Gelenbe, R. Lent, A. Montuori, and Z. Xu.
Towards Networks with Cognitive Packets. In
Proceedings of the 8th International Symposium on
Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (IEEE MASCOTS),
pages 3–12, San Francisco, CA, USA, Aug. 2000.
Opening Invited Paper.

[10] E. Gelenbe, R. Lent, A. Montuori, and Z. Xu.
Cognitive Packet Networks: QoS and Performance. In

Proceedings of the 10th IEEE International
Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunications Systems
(MASCOTS’02), pages 3–9, Fort Worth, Texas, USA,
Oct. 2002. Opening Keynote Paper.

1http://www.switch.ch/network/

[11] E. Gelenbe, R. Lent, and Z. Xu. Design and
Performance of Cognitive Packet Networks.
Performance Evaluation, 46(2-3):155–176, Oct. 2001.

[12] E. Gelenbe and G. Loukas. A Self-Aware Approach to
Denial of Service Defence. Computer Networks,
51(5):1299–1314, Apr. 2007.

[13] E. Gelenbe and A. Nunez. Traffic Engineering with
Cognitive Packet Networks. Simulation Series,
35(4):514–518, Apr. 2003.

[14] E. Gelenbe, G. Sakellari, and M. D’ Arienzo.
Admission of QoS Aware Users in a Smart Network.
ACM Transactions on Autonomous and Adaptive
Systems, 3(1):4:1–4:28, Mar. 2008.

[15] E. Gelenbe, E. Seref, and Z. Xu. Simulation with
Learning Agents. Proceedings of the IEEE,
89(2):148–157, Feb. 2001.

[16] M. Gellman and P. Liu. Random Neural Networks for
the Adaptive Control of Packet Networks. In
Proceedings of the 16th International Conference on
Artificial Neural Networks (ICANN 2006), pages
313–320, Athens, Greece, Sep. 2006.

[17] G. Loukas and G. Oke. Likelihood Ratios and
Recurrent Random Neural Networks in Detection of
Denial of Service Attacks. In Proceedings of the
International Symposium on Performance Evaluation
of Computer and Telecommunication Systems
(SPECTS 2007), pages 16–18, San Diego, California,
USA, July 2007.

[18] G. Oke and G. Loukas. A Denial of Service Detector
based on Maximum Likelihood Detection and the
Random Neural Network. The Computer Journal,
50(6):717–727, Sep. 2007.

[19] G. Oke and G. Loukas. Distributed Defence Against
Denial of Service Attacks: A Practical View. In
Proceedings of 1st BCS International Academic
Conference, Visions of Computer Science, pages
153–162, London, UK, Sep. 2008.

[20] G. Oke, G. Loukas, and E. Gelenbe. Detecting Denial
of Service Attacks with Bayesian Classifiers and the
Random Neural Network. In Proceedings of the IEEE
International Fuzzy Systems Conference (FUZZ-IEEE
2007), pages 1964–1969, London,UK, July 2007.

[21] G. Sakellari. The Cognitive Packet Network: A
Survey. The Computer Journal: Special Issue on
Random Neural Networks, doi:10.1093/comjnl/bxp053,
June 2009.

[22] P. Su and M. Gellman. Using adaptive routing to
achieve Quality of Service. Performance Evaluation,
57(2):105–119, June 2004.


