
Adaptability and Failure Resilience of

the Cognitive Packet Network

Georgia Sakellari, Laurence Hey, and Erol Gelenbe
Imperial College London

(g.sakellari, laurence.hey, e.gelenbe)@imperial.ac.uk

Abstract
Self Aware Networks (SAN) [1] is a proposal of QoS-enabled networks with enhanced

monitoring and self improvement capabilities that use adaptive packet routing proto-
cols. Such an example is Cognitive Packet Network (CPN) [2], which addresses QoS
by using adaptive techniques based on online measurements. It is a distributed pro-
tocol that provides QoS-driven routing, in which users, or the network itself, declare
their QoS requirements (QoS Goals) such as minimum Delay, maximum Bandwidth,
minimum Cost, and so on. CPN is designed to perform self-improvement by learning
from the experience of smart packets, using random neural networks (RNN) [3] with
reinforcement learning (RL), and genetic algorithms.

CPN makes use of three types of packets; smart packets (SP) for discovery, source
routed dumb packets (DP) to carry the payload, and acknowledgement (ACK) packets
to bring back information that has been discovered by SPs, and is used in nodes to
train neural networks. As far as the decision process is concerned, each node stores a
specific RNN for each QoS class, and for each active source-destination pair. Each RNN
node, which represents the decision to choose a given output link for a smart packet,
has as many neurons as the possible outgoing links. Decisions are taken by selecting
the output link for which the corresponding neuron is the most excited. RL is carried
out using a QoS Goal, such as Packet Delay, Loss, Hop Count, Jitter, and so on. The
decisional weights of a RNN are increased or decreased based on the observed success
or failure of subsequent SPs to achieve the Goal. Thus RL will tend to prefer better
routing schemes, more reliable access paths to data objects, and better QoS.

In the CPN protocol, SPs are generated either by a user request to create a path to
some CPN node, or by a user request to discover parts of the network state, including
location of certain fixed or mobile nodes, power levels at nodes, topology, paths, and
their QoS metrics. To avoid overburdening the system with unsuccessful requests or
packets that are in eÆect lost, all packets have a life-time constraint based on the number
of nodes visited. In order for CPN to be more adaptive to any kind of network changes
a fraction of SPs are routed at random at each intermediate router. In this way, a wider
range of paths may be discovered and the network is better explored.

The performance of the CPN routing protocol has been thoroughly investigated in
[4, 5, 6] and it has been shown that it is adaptable to network changes, but it has not
been tested su±ciently in the presence of network failures.

Therefore, the scope of our proposed demo is to show the response of CPN during
network failures. For this purpose, we have implemented a failure emulator mechanism
which, according to a scenario of a failure situation, can emulate the failure of either
some specific links or some machines. The failure can be specified in the scenario, it can
be random, or it can follow a distribution or pattern. In our demo the failure is spread
according to an epidemiological model, the AAWP (Analytical Active Worm Propaga-
tion) model. This is a discrete-time and continuous state deterministic approximation
model, proposed by Chen et al. [7] to model the spread of active worms that employ
random scanning.

1



2

In the AAWP model, a computer can be in one of the following states: infected,
immunised, or vulnerable. At each scan the “worm” randomly chooses another host
of the population and if it is immune nothing happens. If it is vulnerable it becomes
infected and if it is already infected it is not re-infected (it will not change its infection
behaviour). We assume that the infection delay time between two consecutive infection
attempts represents the time required by a computer worm to find a server through
random IP scans (regardless of whether the host is already infected or still vulnerable).
So, a computer cannot infect other hosts before it is infected completely. In our im-
plementation, the infection delay time, which is the time the worm needs to infect a
machine, is currently a random value between two constant values. In the future we
will try a more complex model to take into account distance between the infected node
and the node it tries to infect, the degree of network congestion and other such param-
eters. When a node is infected it is consider under failure (tra±c cannot go though
it since the Ethernet interfaces are disconnected) but it can infect others. Finally, in
order to capture the patching impact on the worm propagation, we dynamically immu-
nize some hosts, by randomly choosing some non-immunized hosts (infected or simply
vulnerable) to become immune. The scanning mechanism used is the random scanning
mechanism but others can be used in the future, such as local subnet and topological
scanning. Also, in our present application we have assumed that all hosts can reach
(infect, immunise) each other directly (no topology issue).

In conclusion, our demo will show the behavior of a Self-Aware Network that uses
CPN, under emulated intermittent failures generated by a failure emulator mechanism
in which failure spread is modelled according to the AAWP (Analytical Active Worm
Propagation) model. Through that we can see that CPN adapts quickly to failures,
without significantly decreasing the QoS provided to the users of the network.

References

[1] E. Gelenbe, R. Lent, and A. Nunez, “Self-aware networks and qos,” Proceedings of
the IEEE, vol. 92, no. 9, pp. 1478–1489, Sep. 2004.

[2] E. Gelenbe, Z. Xu, and E. Seref, “Cognitive packet networks,” in Proceedings of
the 11th International Conference on Tools with Artificial Intelligence (ICTAI ’99).
Chicago, IL: IEEE Computer Society Press, Nov. 1999, pp. 47–54.

[3] E. Gelenbe, “Learning in the recurrent random neural network,” Neural Computa-
tion, vol. 5, no. 1, pp. 154–164, Jan. 1993.

[4] E. Gelenbe, R. Lent, and Z. Xu, “Measurement and performance of a cognitive
packet network,” Computer Networks, vol. 37, no. 6, pp. 691–701, Dec. 2001.

[5] E. Gelenbe, R. Lent, A. Montuori, and Z. Xu, “Cognitive packet networks: Qos
and performance,” in Proceedings of the 10th IEEE International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunications Systems
(MASCOTS’02). Fort Worth, TX: IEEE Computer Society, Oct. 2002, pp. 3–12,
opening Keynote Paper.

[6] E. Gelenbe, M. Gellman, R. Lent, P. Liu, and P. Su, “Autonomous smart routing for
network qos,” in Proceedings of the First International Conference on Autonomic
Computing (ICAC), New York, NY, USA, May 2004, pp. 232–239.

[7] Z. Chen, L. Gao, and K. Kwiat, “Modeling the spread of active worms,” in Pro-
ceedings of the 22nd Annual Joint Conference of the IEEE Computer and Com-
munications Societies (INFOCOM 03), San Francisco, CA, USA, Apr. 2003, pp.
1890–1900.


