
Performance Evaluation 68 (2011) 927–937

Contents lists available at ScienceDirect

Performance Evaluation

journal homepage: www.elsevier.com/locate/peva

Performance evaluation of the Cognitive Packet Network in the presence
of network worms
Georgia Sakellari
Imperial College London, Intelligent Systems and Networks Group Electrical & Electronic Engineering Department, Imperial College, London SW7 2BT,
United Kingdom

a r t i c l e i n f o

Article history:
Available online 13 April 2011

Keywords:
Cognitive Packet Network
Routing protocols
Quality of Service
Self aware networks
Network reliability
Network worms
Network failures

a b s t r a c t

Reliable networks that provide good service quality are expected to becomemore crucial in
every aspect of communication, especially as the information transferred between network
users getsmore complex and demanding and asmalicious users try to deliberately degrade
or altogether deny legitimate network service. The Cognitive Packet Network (CPN) routing
protocol provides Quality of Service (QoS) driven routing and performs self-improvement
in a distributed manner, by learning from the experience of special packets, which gather
on-line QoS measurements and discover new routes. Although CPN is generally very
resilient to network changes, it may suffer worse performance during node failures caused
by network threats, such as network worms. Here we evaluate the performance of CPN in
such crises and compare it with the Open Shortest Path First (OSPF) routing protocol, an
industry standard and widely used in Internet Protocol networks. We also improve it by
introducing a failure detection element that reduces packet loss and delay during failures.
Our experiments were performed in a real networking testbed.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Theneed for network stability and reliability has led to the growth of autonomic networks that useQoSdriven approaches
to providemore stable andmore reliable communications. These approaches aim toprovideQoS evenunder various network
challenges such as congestion and network failures [1–3]. In [2] the author uses the expected QoS to select paths to their
destination and proposes randomised routing policies which can improve QoS. The Cognitive Packet Network (CPN) is a
QoS-based routing protocol and has been shown to adapt quickly to varying network conditions and user requirements [4].
Contrary to conventional mechanisms, it is the users rather than the nodes that control the routing, by specifying their
desired QoS criteria and the network tries to route each one of them individually based on his/her needs. CPN was also
proposed for ad hoc networkswhich provides dynamic discovery of paths that offer both low-delay and energy efficiency [3].
CPN has been evaluated extensively under normal operating conditions and has proven to be very adaptive to network
changes such as congestion. Here we investigate the performance of CPN under catastrophic node failures caused by the
spread of network worms.

The paper is organised as follows: Section 2 provides a brief overview of the CPN routing protocol. In Section 3, we
present previous work evaluating the performance of CPN. In Section 4, we introduce a failure detection element in the CPN
mechanism which improves its performance. In Section 5 we present experiments we conducted specifically for network
node failures propagated as network worms and generated by a failure emulator of our design. We conclude in Section 6
with a summary of our contributions and suggested future work.

E-mail address: g.sakellari@imperial.ac.uk.

0166-5316/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.peva.2011.03.005

http://dx.doi.org/10.1016/j.peva.2011.03.005
http://www.elsevier.com/locate/peva
http://www.elsevier.com/locate/peva
mailto:g.sakellari@imperial.ac.uk
http://dx.doi.org/10.1016/j.peva.2011.03.005


928 G. Sakellari / Performance Evaluation 68 (2011) 927–937

2. Overview of CPN

CPN is an adaptive packet routing protocol that addresses QoS by using adaptive techniques based on on-line
measurements [5–10]. It is a distributed protocol with which users, or the network itself, declare their QoS Goals, such as
minimum Delay, maximum Bandwidth, minimum Packet Loss, minimum Variance of the packet delay, maximum Security
Level in a path, minimum Power Consumption in a wireless node, or a weighted combination of these. It is designed to
perform self-improvement by learning from the experience of special packets that constantly probe the network.

More specifically, it makes use of three types of packets; smart packets (SP) for discovery, source routed dumb packets
(DP) to carry the payload and acknowledgement (ACK) packets to bring back information that has been discovered by SPs,
and is used in nodes to train neural networks and produce routing decisions. The role of SPs is to explore the network
and discover the best routes, according to a QoS goal, for each source–destination pair in the network. At each hop SPs are
routed according to the experiences of previous packets with the same goals and the same destination. The term ‘‘goal’’ is
used instead of ‘‘QoS specifications’’ to emphasise the fact that there are no QoS guarantees and that CPN provides a best
effort service [11]. The decisions of the SPs are based on a learning algorithm. In order to explore all possible routes, at some
hops, each SP makes a random routing decision, with a small probability (usually 5%). To avoid overburdening the system
with unsuccessful requests or packets which are in effect lost, all packets have a life-time constraint based on the number
of nodes they have visited.

Several algorithms have been used in CPN as learning and decision techniques in order for SPs to find satisfactory routes
from source to destination based on the desired goals. As far as the decision process is concerned, RandomNeural Networks
(RNNs) [12] aremainly used. The RNN is a biologically inspired neural networkmodelwhich is characterised by the existence
of positive (excitation) and negative (inhibition) signals in the form of spikes of unit amplitude that circulate among nodes
and alter the potential of the neurons. Each neuron can be connected to another neuron and each connection is characterised
by an excitatory or inhibitory weight [13]. The state of a neuron, which represents the probability that the neuron is excited,
has been proven to satisfy a system of nonlinear equations with a unique solution. Therefore, in a CPN network, at each
node a specific RNN that has as many neurons as the possible outgoing links, could represent the decision to choose a given
output link for a smart packet. The arrival of SPs triggers the execution of RNN and the routing decision is the output link
corresponding to the most excited neuron.

As far as the learning process used with RNN, the algorithm that eventually prevailed in the implementations of CPN is
Reinforcement Learning (RL). RL is used to change neuron weights in order to reward or punish a neuron according to the
level of goal satisfactionmeasured on the corresponding output. Therefore the decisional weights of an RNN are increased or
decreased based on the observed success or failure of subsequent SPs to achieve the goal. Thus RL will tend to prefer better
routing schemes, more reliable access paths and better QoS.

3. Previous work on performance evaluation of CPN

The performance of the CPN routing protocol has been extensively investigated for variety of performance metrics in
normal operating conditions, but not in the presence of node failures [1,10]. Below we present the experimental work
conducted in the past in order to evaluate the performance of CPN. All performance evaluation work has been carried out
in a real networking testbed, running CPN as a module of the Linux kernel.

3.1. Adaptability

CPN’s ability to adapt to changing network conditions, such as changes in traffic load, link failures, or buffer overflows
has been experimentally evaluated in [14]. The experiments showed that CPNmanaged to find new routes in order to avoid
obstructing traffic that was introduced in some of the links used by the data traffic and also avoided links that where under
failures. Another issue studied experimentally in [14] was the effect of the ratio of SPs on overall performance, which was
was further investigated in [15]. The experiments concluded that in order to achieve the best performance for the data
packets (DPs) the percentage of SPs that should be sent for discovery is 10%–20% of the data packets’ rate. Going beyond
these values does not significantly improve the QoS values for DPs. One must bear in mind that in CPN, SPs and ACKs are
not full sized Ethernet packets, but are actually 10% of the DPs’ size. If 20% of SP traffic is added, this will result in 14% traffic
overhead, when ACKs are generated by both DPs and SPs, and only 4% of traffic overhead when ACKs are only generated in
response to SPs. Additionally it was shown that a small number of SPs can suffice to initially establish a connection.

3.2. QoS goals

The experiments in [16] show that CPN can implement distributed adaptive shortest-path routing and approximately
find shortest paths. Extensive experiments compare the shortest-path CPN, where the QoS goal is the minimum hop count,
with a CPN routing using minimum-delay and a version where routing is based on a combination of hop count and forward
delay. The experiments, conducted under low, medium and high background traffic, show that the use of criteria more
complex than the shortest number of hops, can provide better overall quality of service.



G. Sakellari / Performance Evaluation 68 (2011) 927–937 929

The choice of a ‘‘goal’’ and ‘‘reward’’ function for packetised voice applications is discussed in [7], where experiments
conducted for ‘‘voice over CPN’’ are presented. The performance of CPN is detailed via several measurements showing that
the resulting QoS is better than when using IP in identical conditions. Measurements indicating how the CPN protocol can
respond to different QoS goals are also presented in [8,11]. Composite goal functions which take into account both delay
and packet loss are proposed. In [11], the measurements suggest that CPN networks effectively adapt routing behaviour to
the QoS goal that is specified.

The use of delay as a QoS goal implies the collection of timestamps along packet paths, which add overhead to the packets,
especially in long paths. Therefore, the authors of [17] have implemented a composite QoS goalmetricwhich consists of path
length and buffer occupancy of nodes to achieve traffic balancing and to identify low-delay paths in a network. Experimental
results in a wired testbed and wireless ad hoc simulations show that a routing goal that combines path length and buffer
occupancy in nodes offers the advantage of producing approximately the same performance as that of using delay, but with
less packet overhead.

3.3. Routing oscillations

Although oscillations are generally considered as a weakness of a network, performance evaluations in [18] indicate that
routing oscillations do not severely degrade performance as would be expected, and high performance can still be obtained.
The authors of [18,19] study the way that oscillations can be controlled. Two different parameters that affect oscillations are
considered: the use of probabilistic path switching, which can be used both tomake path switchingmore asynchronous and
to vary the rate at which switching decisions are made, and the introduction of a decision threshold which will only allow
path switching if the gain expected from switching exceeds a certain minimal value. Both of these control schemes are easy
to implement and provide an effective way to limit oscillations and their negative consequences.

3.4. Realistic environments

A set of experiments which demonstrate how CPN performs in a realistic environment of a 46-node test-bed have been
presented in [20]. CPN’s performance was compared to that of an industry standard routing protocol, the Open Shortest
Path First (OSPF) routing protocol, the current industry standard and widely used in Internet Protocol networks. A 46-node
test-bed was used, the topology of which represents a real-world topology, the Swiss Education and Research Network
(SWITCHlan), which is used by universities and some education sites in Switzerland. The administrators of this network
provided the authors of [20] with details on their 46-router backbone, complete with bandwidth, OSPF costs, and link-
level delays. Because the cost of each link is proportional to its delay, OSPF routing converges to the minimal delay path,
giving a baseline for comparison. The experiments show that the routes CPN computes are as good as those computed a
priori using administrator-defined costs. Furthermore, the paper gives experimental results showing that RNN with RL can
autonomously learn the best route in the network simply through exploration in a very short time-frame and demonstrates
that the CPN protocol is able to adapt to changes in the network environment quickly, by switching to a new optimal route
in the network.

4. Enhancing the failure-awareness of CPN

Currently, each CPN node detects failures by sending ‘‘hello’’ messages to its neighbours. This way a neuron (link) is ex-
cluded from a decision only if one of a node’s neighbours is under failure. Thus, CPN does not take into consideration failures
which could be further away and can influence the selection of a specific link. Additionally, theweights of the RNNs in a node
are updated only when an ACK packet returns to it. Therefore, if a node which is part of a selected route suffers a failure,
the ACKs returning to the source through that same route will never reach the source and the weights of the neurons corre-
sponding to the links that are affected by the failurewill never be punished. To prevent this, CPN nodes route a fraction of the
SPs randomly, so that sudden changes of any kind could be discovered. But even with this technique, in some failure scenar-
ios it may need considerable numbers of random SPs before the decision of a node changes. For example, if the neuronwhich
corresponds to the node/path under failurewas previously chosen a lot of times, and thus has amuch higherweight than the
rest of the neurons, it might need a big number of random SPs to discover another path. Thus, if that neuron was the most
excited, the subsequent source-routed data packetswill continue to follow the path under failure andwill be lost until a new
path is discovered. In this section we propose a detection mechanism that makes the neurons of CPN more failure-aware.

In our scheme,whichwas first introduced in [21], a neuron can be considered under failure even if the first hop neighbour
node is not under failure, because it may be part of a path that has failed. More specifically, at each RNN and for each neuron
i, the timestamp of the last SP and the last ACK that used it, are stored. If no ACK has been received after sending the last SP:

timestamp of last SP going through i − ε < timestamp of last ACK coming through i (1)
then the link is considered ‘‘under failure’’ and the neuron corresponding to this link is considered ‘‘expired’’. Expired

neurons do not participate in the calculation of the excitatory probabilities and the subsequent decisions of the RNN. The
value of ε may be different for each neuron and may depend on the average delay between the node and the destination,
under normal conditions. The neuron is just ignored and its weights do not change so that they can be used again either
after the failure restoration or if another path is discovered that bypasses the failure.



930 G. Sakellari / Performance Evaluation 68 (2011) 927–937

5. Performance evaluation of CPN under node failures propagating as a network worm

5.1. Network worms

Network worms are malicious self-replicating and self-propagating applications that exploit system vulnerabilities of
some operating systems and spread through networks. Their defining characteristic is their ability to achieve high infection
rates; they can spread and saturate a network very quickly. The results of such attacks could be mild, such as the printout
of a message or more serious such as deleting or modifying system files, reducing the system performance, or causing total
failure to the infected machines. From the service quality perspective and according to the extent of the spread, the latter
could lead to serious agitation for the users of the network, due to information loss and delays.

Network worms use a number of different methods to identify new targets for infection; for example, many worms scan
randomly generated IP addresses to locate vulnerable hosts (random scan), or scan the IP address space based on the route
information in a network (routable scan), or acquire a target address table from the DNS server (DNS scan), or create a pre-
generated target list which includes vulnerable hosts and then try to infect the computers listed there (hit-list scan) [22–24]

As for the study of the propagation of network worms, several models have been proposed, many of which are
inspired by the propagation models of infectious diseases [23]. In the Simple Epidemic model (SEM) each host is in
one of the two states: susceptible or infectious and once infected by a virus, the host remains in the infectious state
forever [23,25]. Unlike the SEM model, in the Kermack–Mckendrick (KM) model the host maintains one of three states:
susceptible, infectious or removed [23,26]. When an infected host is immunised it is removed from the whole system
and does not take into consideration situations where susceptible and infected hosts are patched to resist the worm. The
Susceptible–Infectious–Susceptible (SIS) model assumes every host has the same possibility of being infected repeatedly
even if they have recovered but does not take into account the situation that the infected hosts are patched or updated to
be immune from the worms [23,27].

The Two-Factor model is the extension and supplement of SEM and KM and considers more external factors and anti-
worm measures [23,28]. One factor is the dynamic countermeasures taken by ISPs and users and the other is the slowed
down worm infection rate because rampant propagation of worm causes congestion and troubles to some routers. It does
not consider though the patching of the infected hosts. The Worm–Anti-Worm model takes into account the existence of
an antagonistic worm and considers two types of worms, the malicious worm and an oppositional one, which can detect,
clean and patch the hosts infected by the malicious worms [23]. It does not consider though the states of the antagonistic
worm after it enters the susceptible hosts.

The patching effect and the ability to resist specific worms while being susceptive to others is addressed in [29,30].
The author, inspired by biological viruses, proposes a probability model for populations of agents (computer software) and
viruses (computerworms) that interact in the presence of an anti-viral agent. Both agents and viruses can belong to different
strains. If a virus survives the effect of the anti-viral agent it belongs to a different strain from the one it started in, and its
ability to survive future encounters or infect healthy agents is modified. Similarly, an agent which remains healthy after an
encounter with a virus will belong to a new strain and this will impact its future behaviour. Also, an antiviral agent can be
made up of a mix or cocktail, with different proportions of agents that target different strains of the virus.

In our experiments, the failures are spread according to the Analytical Active Worm Propagation (AAWP) model. This is
a discrete-time and continuous state deterministic approximation model, proposed by Chen et al. to model the spread of
active worms that employ random scanning [31]. In the AAWPmodel, a node can be in one of the following states: infected,
immunised, vulnerable. In our present application we have assumed that all hosts can reach (infect or immunise) each
other directly (the topology of the network is irrelevant). At each scan, the ‘‘worm’’ randomly chooses another host of the
population and if it is immune nothing happens. If it is vulnerable it becomes infected and if it is already infected, it does not
get re-infected. We assume that the infection delay time between two consecutive infection attempts represents the time
required by a computer worm to find a server through random IP scans, regardless of whether the host is already infected
or still vulnerable. So, a computer cannot infect other hosts before it is infected completely. In our implementation, the time
the worm needs to infect a machine, called the infection delay time, is a random value within a predetermined range, but
the emulator could be extended so that the infection delay time could be subtracted by a more complex model which takes
into account the distance between the infected node and the node it tries to infect, the degree of network congestion and
other such parameters. When a node is infected it is considered under failure but it can still infect others. Finally, in order
to capture the patching impact on the worm propagation, we dynamically immunise some hosts, which, after some time,
start immunising others (infected or simply vulnerable) randomly. The time a newly immunised node has to wait before it
starts immunising others is again a random value. The scanning mechanism used is the random scanning mechanism but
others could be used, such as local subnet and topological scanning.

5.2. Failure emulator

Emulating failures in a controlled and reproducible manner is vital for the evaluation of the resilience of a network to
failure scenarios. For this reason we have developed such an emulator. It can emulate the failure of specific links or nodes.
This is achieved by disabling some or all Ethernet interfaces of a node which are connected to the network, so that no



G. Sakellari / Performance Evaluation 68 (2011) 927–937 931

Fig. 1. Snapshots of the failure emulator at the beginning of the failure spread and after the failures have spread throughout the network.

traffic can go through that node. The failure can then be restored by enabling these interfaces. The failure propagation can
be random, according to a probability distribution or a pattern. Here, we consider failures that propagate according to the
AAWP model (Fig. 1).

5.3. Configuration of the experiments

The experimentswere conducted on a 46-node testbed (Fig. 2). The topology of the testbed represents the real SWITCHlan
network topology.1 In order to make the environment more realistic we used actual details of the 46-router backbone,
complete with bandwidth, OSPF costs, and link-level delays which were given by the administrators of the SwitchLAN
network to the authors of [20].We have also configured IP routing using quagga 0.99.3 with the OSPF costs of the SwitchLAN
network so that the routes in our testbed should be exactly the same as those used in the real Swiss backbone. Because

1 The Swiss Education & Research Network (SWITCHlan) network provides service in Switzerland to all universities, two federal institutes of technology
and major research institutes, http://www.switch.ch/network/.

http://www.switch.ch/network/


932 G. Sakellari / Performance Evaluation 68 (2011) 927–937

Fig. 2. Realistic topology with artificial delays. The thickness of the links represents their delay. The grey and thinner lines are low-delay links, while the
darker (blacker) and thicker ones denote higher delays.

the cost of each link is proportional to its delay, OSPF routing converges to the minimal delay path, giving a baseline for
comparison.

There are three Source–Destination (S–D) pairs that correspond to three users in the network. Each user generates UDP
traffic at a constant bitrate of 6 Mbps. At the beginning of the experiment all nodes are vulnerable except the sources and
destinations. All the sources and destinations are immune so that they will not suffer a failure. Each experiment lasts for
120 s. The failure propagation starts 10 s after the start the experiment and its duration varies according to the scanning
rate. The higher the scanning rate themore the number of infected nodes, and therefore the longer the network will operate
in difficult conditions and experience congestion. More analytically:

• The number of machines that are already infected at the start of the ‘‘worm’s’’ propagation is 1.
• The scanning rate varies within the range [0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7] scans/s, which corresponds to 1 node being

scanned every [10, 5, 3.33, 2.5, 2, 1.67, 1.43] s respectively.
• The duration of the experiment is 120 s.
• The worm propagation starts at the 10th second.
• A newly infected node has to wait for a given delay before it starts infecting others. In our experiments that delay is a

random value between 15 and 20 s.
• When a node is infected it is considered to be under failure, traffic cannot go though it (Ethernet interfaces are disabled)

but it can still infect others.
• The patching process starts at the 70th second (60 s after the start of the failure propagation) and the patching rate is

equal to 0.5 node/s. Finally, before it starts immunising others, a newly immunised node has to wait a random value
between 15 and 20 s.

5.4. Experimental results

In the figures presented next we compare the performance of CPN to that of OSPF routing protocol and to our proposed
failure-aware CPN. Each experiment was conducted 10 times and the values presented are the average of these runs. The
values missing in the delay graphs are due to the fact that at those points, most of the network nodes were under failure
and there was no route connecting at least one user’s source and destination. This is also confirmed by the loss graphs since
at those points the packet loss is equal to 100%. Having 100% packet loss in some cases is not unrealistic. It is due to the fact
that we have a relatively small testbed and the effects of the failure spread in such a network lead to the saturation of the
network by the failures and thus it is very probable that there is no path between the source and the destination of a user,
which in turn leads to total loss of the data packets.



G. Sakellari / Performance Evaluation 68 (2011) 927–937 933

Fig. 3. Average packet loss and average delay for all 3 users when scanning rate = 0.05 nodes/s.

Fig. 4. Average packet loss and average delay for all 3 users when scanning rate = 0.1 nodes/s.

Fig. 5. Average packet loss and average delay for all 3 users when scanning rate = 0.2 nodes/s.

Figs. 3–10 show the average packet loss and delay of all three users throughout the duration of the experiment. It is
evident that by using CPN we have significantly less packet losses than when using OSPF. Also, packet losses are further
reduced when we use the failure-aware version of CPN. The fact that with CPN and especially with the failure-aware CPN



934 G. Sakellari / Performance Evaluation 68 (2011) 927–937

Fig. 6. Average packet loss and average delay for all 3 users when scanning rate = 0.3 nodes/s.

Fig. 7. Average packet loss and average delay for all 3 users when scanning rate = 0.4 nodes/s.

Fig. 8. Average packet loss and average delay for all 3 users when scanning rate = 0.5 nodes/s.

the network has reached 100% losses less times, means that it had detected and avoided the failures more quickly and had
found paths between the sources and the destinations when OSPF could not. As far as the delay is concerned, both versions
of CPN have kept the delay values lower than the OSPF. The failure-aware CPN manages to keep the delay values in the



G. Sakellari / Performance Evaluation 68 (2011) 927–937 935

Fig. 9. Average packet loss and average delay for all 3 users when scanning rate = 0.6 nodes/s.

Fig. 10. Average packet loss and average delay for all 3 users when scanning rate = 0.7 nodes/s.

same levels, if not better, with the current CPN. In all cases the CPN protocol, on average, performs better than OSPF and our
failure-aware CPN has generally improved the performance of CPN in respect to packet loss and has kept delay in the same
levels. This is more obvious in the summarised results presented next.

5.4.1. Result summary
Below we summarise the previous results of all the scanning rates into one figure for the average packet loss and one

figure for the average delay for all users in the network.
Fig. 11 presents the average packet loss and delay for all three users. As expected the average packet loss increases as

the scanning rate increases since the infected nodes increase. The results show that, on average, the QoS of the users is
significantly improvedwhen using the failure-aware CPN. Users lose less data during the experiment while the delay is kept
onmore or less the same levels. This means that failure-aware CPN has detected and avoided the failures more quickly than
both the current CPN and OSPF.

6. Conclusions

In this paper we evaluated the performance of the CPN routing protocol in the presence of network worms which cause
node failures. We provided experimental results showing the resilience of CPN and its comparison with the IP protocol. The
experiments were conducted in a real testbed and the results demonstrate CPN’s ability to guide the network during a crisis
by adapting quickly to the network changes without significantly affecting the QoS provided to the users of the network.We
have also described a failure detection element which is shown to further improve the performance of CPN during failures.

Further work could include experimental evaluations in scenarios of worm propagations based on epidemiological
models or mathematical models derived from empirical data. Also, we acknowledge that we conducted the experiments in



936 G. Sakellari / Performance Evaluation 68 (2011) 927–937

Fig. 11. Average packet loss and average delay for all users when scanning rate = [0.05 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7] nodes/s.

a testbed that is relatively small in the context of epidemics. In order to investigate epidemics we need a significantly larger
network by using for example PlanetLab nodes [32]. Furthermore, the failure detection component proposed in Section 4
could be further improved by finding the optimal time a node has towait until it considers a link part of a failed path. Finally,
the failure emulator described in Section 5.2 can be used to identify the real-time network parameters that could proclaim
the existence of a computer worm before it actually spreads throughout the network.

References

[1] E. Gelenbe, Steps toward self-aware networks, Communications of the ACM 52 (7) (2009) 66–75.
[2] E. Gelenbe, Sensible decisions based on QoS, Computational Management Science 1 (1) (2003) 1–14.
[3] E. Gelenbe, R. Lent, Power-aware ad hoc cognitive packet networks, Ad Hoc Networks Journal 2 (3) (2004) 205–216.
[4] E. Gelenbe, Z. Xu, E. Seref, Cognitive packet networks, in: Proceedings of the 11th International Conference onToolswithArtificial Intelligence, ICTAI’99,

IEEE Computer Society Press, Chicago, IL, USA, 1999, pp. 47–54.
[5] E. Gelenbe, R. Lent, A. Montuori, Z. Xu, Towards networks with cognitive packets, in: Proceedings of the 8th International Symposium on Modeling,

Analysis and Simulation of Computer and Telecommunication Systems, IEEEMASCOTS, San Francisco, CA, USA, August 2000, pp. 3–12, opening Invited
Paper.

[6] E. Gelenbe, R. Lent, Z. Xu, Design and performance of cognitive packet networks, Performance Evaluation 46 (2–3) (2001) 155–176.
[7] E. Gelenbe, R. Lent, A. Montuori, Z. Xu, Cognitive packet networks: QoS and performance, in: Proceedings of the 10th IEEE International Symposium

on Modeling, Analysis, and Simulation of Computer and Telecommunications Systems, MASCOTS’02, Fort Worth, Texas, USA, October 2002, pp. 3–9,
opening Keynote Paper.

[8] E. Gelenbe, M. Gellman, R. Lent, P. Liu, P. Su, Autonomous smart routing for network QoS, in: Proceedings of the First International Conference on
Autonomic Computing, ICAC, New York, NY, USA, May 2004, pp. 232–239.

[9] E. Gelenbe, Cognitive packet network, US Patent 6804201 B1, October 2004.
[10] G. Sakellari, The cognitive packet network: a survey, The Computer Journal: Special Issue on Random Neural Networks 53 (3) (2009) 268–279.

doi:10.1093/comjnl/bxp053.
[11] P. Su, M. Gellman, Using adaptive routing to achieve quality of service, Performance Evaluation 57 (2) (2004) 105–119.
[12] E. Gelenbe, Random neural networks with negative and positive signals and product form solution, Neural Computation 1 (4) (1989) 502–510.
[13] E. Gelenbe, E. Seref, Z. Xu, Simulation with learning agents, Proceedings of the IEEE 89 (2) (2001) 148–157.
[14] E. Gelenbe, R. Lent, Z. Xu, Measurement and performance of a cognitive packet network, Computer Networks 37 (6) (2001) 691–701.
[15] E. Gelenbe, R. Lent, A. Nunez, Self-aware networks and QoS, Proceedings of the IEEE 92 (9) (2004) 1478–1489.
[16] E. Gelenbe, P. Liu, QoS and routing in the cognitive packet network, in: Proceedings of First International IEEE WoWMoM Workshop on Autonomic

Communications and Computing, ACC’05, Taormina, Italy, June 2005, pp. 517–521.
[17] R. Lent, P. Liu, Searching for low latency routes in CPNwith reduced packet overhead, in: Proceedings of the 20th International Symposiumof Computer

and Information Sciences, ISCIS’06, in: Advances in Computer Science and Engineering Series. Istanbul, Turkey, October 2005, pp. 63–72.
[18] M. Gellman, Oscillations in self-aware networks, Proceedings of the Royal Society 464 (2096) (2008) 2169–2185.
[19] E. Gelenbe, M. Gellman, Oscillations in a bio-inspired routing algorithm, in: Proceeding of the IEEE International Conference on Mobile Ad hoc and

Sensor Systems, MASS 2007, BIONETWORKS Workshop, Pisa, Italy, October 2007, pp. 1–7.
[20] M. Gellman, P. Liu, Random neural networks for the adaptive control of packet networks, in: Proceedings of the 16th International Conference on

Artificial Neural Networks, ICANN 2006, Athens, Greece, September 2006, pp. 313–320.
[21] G. Sakellari, E. Gelenbe, Adaptive resilience of the cognitive packet network in the presence of networkworms, in: Proceedings of theNATOSymposium

on C3I for Crisis, Emergency and Consequence Management, Bucharest, Romania, May 2009, pp. 16:1–16:14.
[22] S. Staniford, V. Paxson, N. Weaver, How to own the Internet in your spare time, in: Proceedings of the 11th USENIX Security Symposium, Security’02,

San Francisco, CA, USA, August 2002, pp. 149–167.
[23] S. Qing, W. Wen, A survey and trends on Internet worms, Computers & Security 24 (4) (2005) 334–346.
[24] C. Zou, D. Towsley, W. Gong, On the performance of Internet worm scanning strategies, Performance Evaluation 63 (7) (2006) 700–723.
[25] H. Andersson, T. Britton, Stochastic Epidemic Models and Their Statistical Analysis, Springer-Verlag, New York, 2000.
[26] J. Frauenthal, Mathematical Modeling in Epidemiology, Springer-Verlag, New York, 1980.
[27] L. Allen, A. Burgin, Comparison of deterministic and stochastic SIS and SIR models in discrete time, Mathematical Biosciences 163 (1) (2000) 1–33.
[28] C. Zou, W. Gong, D. Towsley, Code red worm propagation modeling and analysis, in: Proceedings of the 9th ACM conference on Computer and

Communications Security, CCS’02, Washington, DC, USA, November 2002, pp. 138–147.

http://dx.doi.org/doi:10.1093/comjnl/bxp053


G. Sakellari / Performance Evaluation 68 (2011) 927–937 937

[29] E. Gelenbe, Keeping viruses under control, in: Proceedings of the 20th International Symposium on Computer and Information Sciences, ISCIS 2005,
in: Lecture Notes in Computer Science, vol. 3733. Springer Verlag, New York, Berlin, Istanbul, Turkey, October 2005, pp. 1–1.

[30] E. Gelenbe, Dealing with software viruses: a biological paradigm, Information Security Technical Reports 12 (4) (2007) 242–250.
[31] Z. Chen, L. Gao, K. Kwiat, Modeling the spread of active worms, in: Proceedings of the IEEE INFOCOM 2003, vol. 3, San Francisco, CA, USA, April 2003,

pp. 1890–1900.
[32] L. Paterson, T. Roscoe, The Design Principles of PlanetLab, Tech. rep., Technical Report PDN04021, PlanetLab Consortium, June 2004.

Georgia Sakellari is a research associate at Imperial College London. She holds a Ph.D. in computer networks from Imperial College
London, an M.Eng. Degree on Electrical Engineering and Computer Science and an MBA degree, both from the National Technical
University of Athens. Her recent research activities include distributed admission control in QoS-driven networks, maintaining
QoS during failures and self-aware networks.


	Performance evaluation of the Cognitive Packet Network in the presence of network worms
	Introduction
	Overview of CPN
	Previous work on performance evaluation of CPN
	Adaptability
	QoS goals
	Routing oscillations
	Realistic environments

	Enhancing the failure-awareness of CPN
	Performance evaluation of CPN under node failures propagating as a network worm
	Network worms
	Failure emulator
	Configuration of the experiments
	Experimental results
	Result summary


	Conclusions
	References


