
1Scientific Data | (2024) 11:212 | https://doi.org/10.1038/s41597-024-03027-3

www.nature.com/scientificdata

AndroDex: Android Dex Images of
Obfuscated Malware
Sana Aurangzeb1, Muhammad Aleem1, Muhammad Taimoor Khan   2 ✉, George Loukas2 &
Georgia Sakellari2

With the emergence of technology and the usage of a large number of smart devices, cyber threats
are increasing. Therefore, research studies have shifted their attention to detecting Android malware
in recent years. As a result, a reliable and large-scale malware dataset is essential to build effective
malware classifiers. In this paper, we have created AndroDex: an Android malware dataset containing
a total of 24,746 samples that belong to more than 180 malware families. These samples are based
on .dex images that truly reflect the characteristics of malware. To construct this dataset, we first
downloaded the APKs of the malware, applied obfuscation techniques, and then converted them
into images. We believe this dataset will significantly enhance a series of research studies, including
Android malware detection and classification, and it will also boost deep learning classification efforts,
among others. The main objective of creating images based on the Android dataset is to help other
malware researchers better understand how malware works. Additionally, an important result of
this study is that most malware nowadays employs obfuscation techniques to hide their malicious
activities. However, malware images can overcome such issues. The main limitation of this dataset is
that it contains images based on .dex files that are based on static analysis. However, dynamic analysis
takes time, therefore, to overcome the issue of time and space this dataset can be used for the initial
examination of any .apk files.

Background & Summary
Android smartphone applications are continuously gaining popularity due to the extensive use of mobile appli-
cations1. These applications serve various purposes, such as calling, messaging, data exchange, sending emails for
correspondence and social interaction, browsing websites, controlling IoT-related devices, health monitoring,
location tracking using GPS, online transactions, shopping, and are prevalent in almost every aspect of our every-
day lives2. Apart from their user-friendly interactive environment and flexible operating system (OS), these appli-
cations are freely available on the official app stores, including the Google Play Store (www.google.com), the Apple
App Store(https://www.apple.com/store), the Microsoft Store (https://apps.microsoft.com/) and the Amazon
Store (https://www.amazon.com/). However, with the increase of mobile applications and their distribution,
malicious apps and their variants are designed to track and spy on users’ behavior and activities, posing a threat
to users’ privacy, confidentiality, and integrity3,4. While users tend to trust applications downloaded from official
stores, the reality is different. Cybercriminals have started developing malicious mobile apps that exploit vulner-
abilities and compromise users’ privacy through malware obfuscation techniques5. Malware is a malicious piece
of software aimed at damaging systems without user consent6,7 and malware obfuscation is a technique used to
defend against antivirus detection by hiding the program in a way that becomes difficult to understand8. Malware
obfuscation techniques such as adding dump-code9, reassignment of registers10, subroutine reordering10,11,
instruction substitution8, code transposition, and code integration11 can be applied to different types of malware
such as Encrypted malware, Oligomorphic, Polimorphic, and Metamorphic Malware12,13. Encrypted malware rep-
resents the first step in evading antivirus signature-based security systems13. In encrypted malware, a decryptor is
attached to the malware, aiming to recover the file after execution using different keys14, making the encryption
complex and hiding its signature. However, anti-virus software can detect such malware by recognizing decryp-
tor patterns. To overcome the limitations of encrypted malware, cybercriminals came up with the technology
of mutating decryptors known as oligomorphic malware. However, oligomorphic can only mutate a few types of

1National University of Computing and Emerging Sciences (FAST-NUCES), Department of Computer Science,
Islamabad, 44000, Pakistan. 2Centre for Sustainable Cyber Security, School of Computing and Mathematical
Sciences, University of Greenwich, London, UK. ✉e-mail: m.khan@greenwich.ac.uk

Data Descriptor

OPEN

https://doi.org/10.1038/s41597-024-03027-3
http://orcid.org/0000-0002-5752-6420
http://www.google.com
https://www.apple.com/store
https://apps.microsoft.com/
https://www.amazon.com/
mailto:m.khan@greenwich.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1038/s41597-024-03027-3&domain=pdf

2Scientific Data | (2024) 11:212 | https://doi.org/10.1038/s41597-024-03027-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

decryptor variants and, therefore, can be detected by anti-viruses13. To overcome this shortcoming, polymorphic
malware generates an unlimited number of decryptors using obfuscation techniques, making it difficult to detect.

Android OS, released in 2008 and sponsored by Google, can run applications developed in Java. These codes
are platform-dependent, which means they can only work if the target OS is Android. Android applications
come up as an archive known as Android Package (APK)15. This APK file is a compressed package file usually in
the format of .zip that comprises different libraries, directories, and records. This zip file consists of the Android
Manifest file i.e., AndroidManifext.xml. This is a configuration file that contains meta-information about the
application (i.e., the name of the application, the version number, permissions required, meanings of segments,
for example, services, registration services, activities linked with other applications, content providers, broad-
cast receivers, libraries, and rendition support2,16. Then is the main and the most important classes.dex file, the
runnable file on the Dalvik virtual machine, which contains all the operating instructions of the application
and runtime data. The Android OS contains a folder named res that stores pictures, symbols, User Interface
(UI) formats, and all the resource files needed by the APK. There is another folder named libs known as the
library folder. Other library resources contain assets that store static files that need to be packaged into an APK.
META-INF folder that stores application signatures and certificates to ensure the integrity of APK packages and
system security, and lastly, the resources.ars file that is the compiled binary resource file as shown in Table 1.
In this paper, we analyze classes.dex file structure as this is the only runnable file that contains all the operating
instructions of the application and runtime data. Therefore, to analyze the application to be either as obfuscated
or non-obfuscated .dex file plays a vital role. The structure of the .dex file is shown in Fig. 1.

Keeping in mind the above discussion, as obfuscation techniques become more sophisticated, the future
trend of classifying applications into malicious, benign, and obfuscated malware is increasing. In this data-
set, we have converted .dex files of both benign and malware applications into images. Additionally, we have
applied obfuscation techniques to demonstrate how images play a vital role in identifying obfuscated malware.
To analyze critical malware apps i.e., the obfuscated malware, the existing datasets are Kronodroid, Drebin,
Malgenome, and AndroZoo datasets. Kronodroid contains a vast range of malware from the year 2008 to 2020.
However, Drebin, Malgenome, and AndroZoo datasets are mainly used for the classification of malware and
benign applications and lack a good number of advanced malware such as those malware that employs several
encryption techniques (e.g., polymorphic behavior). None of the existing datasets contains images of the obfus-
cated malware, whereas, with technological advancements, the malware are becoming more sophisticated and
older malware samples are not adequate for the analysis of the newer malware threats based on obfuscation
techniques. Additionally, the dataset size in terms of the number of samples are smaller as compared to the
employed Androdex dataset. For example, the MalGenome dataset contains 1260 samples whereas, the Drebin
dataset consists of 5560 samples from the year 2010 to 2012, kronodroid consists of 28,475. In contrast, the
dataset employed in this study i.e., Androdex contains more diversified malware samples i.e., the older ones and
with new and advanced samples along with the obfuscated ones (including Kronodroid) samples total 45,879 of
which 24,746 are binaries and 21,133 are images. Furthermore, the Androdex dataset consists of images as well
as binary format that provide dual flexibility to classify malware using supervised and unsupervised methods. In
addition, images plays a vital role in detecting obfuscated malware, therefore, latest neural network algorithms
can be applied to identify malware in an advanced way.

Methods
Dataset acquisitions.  The AndroDex dataset17,18 consists of 24,746 binaries of which 21,133 images are suc-
cessfully converted against android .dex file which consists of benign images, malware images, obfuscated-benign
images, and obfuscated-malware images as shown in Table 2. To construct the dataset, we used application hash
values from three well-known and widely used datasets (i) Drebin19 (ii) Kronodroid20 that covers a wide variety of
malware (iii)Androzoo21. The Drebin dataset consists of 5,560 files from 179 different malware families whereas
Kronodroid consists of 28,745 malicious apps from 209 malware families and 35,246 benign samples whereas
Androzoo contains more than three million unique Android apps. Unfortunately, these datasets provide the

Files and Folders Description

Manifest (AndroidManifext.xml)
A required configuration file contains Key information about the application. For example, the
application’s package name, its components i.e., activities, resources, permissions requires to run and
to access this application’s information by other apps, compatibility features i.e., minimum Android
version and supported devices16.

Delvik Bytecode (classes.dex)
The only runnable file on the Dalvik virtual machine, which contains all the operating instructions
of the application and runtime data. APK files may contain more than one classes.dex file that will be
numbered as classes2.dex, classes3.dex, and so forth16.

Resources (res/) stores pictures, symbols, User Interface (UI) formats and all the resource files stored in the folder
hierarchy required by the APK and to be used by the developer16

Native Libraries (libs/) The library folder that contains native libraries (machine code)16

Assets (assets/) store static files that need to be packaged into APK16.

Signatures (META-INF)
Folder that contains verification information and store application signatures and certificates to
ensure the integrity of APK packages and system security. This means that any change in the APK file
must require resigning the APK, otherwise, the OS will reject the installation16.

Compiled Resources (resources.arsc) the compiled binary resource file that contains information that links the code (classes.dex) to the
resources (res)16.

Table 1.  Structure of Android APK file.

https://doi.org/10.1038/s41597-024-03027-3

3Scientific Data | (2024) 11:212 | https://doi.org/10.1038/s41597-024-03027-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

hash values only, therefore, the first challenge is to get the APK files. Once the APK files are downloaded which
is a compressed package file usually in the format of .zip. After extracting the .zip file we get the most important
runnable file comprised of all the important operating instructions of the application i.e., classes.dex file as shown
in Fig. 2. To construct the dataset, these classes.dex files are then converted into their respective binary files using
the 010 editor. The 010 editor can provide both the decimal and binary format of .dex file as shown in Figs. 3, 4
respectively. So, we automate this step for all the datasets in order to get the binary files of the respective DEX
files. To construct images, binary and decimal values are equivalent in such a way that binary values 0 represents
the black color and 1 represents the white color and for grey-scale images, we used an 8-bit color format which is
one of the most famous image formats. Therefore, behind the image matrix value ranges are from 0–255 where 0
represents black and 255 represents white. For colored images 16-bit format or 24-bit format is used in such a way
that 16-bit format is further divided into Red, Green, and Blue (R,G,B) format.

Dataset overview.  To construct the AndroDex dataset17,18, we relied first on two classes i.e., malware and
benign applications (see Fig. 2). However, later we applied two types of obfuscation techniques (i) AVPass22 (ii)
Obfuscapk23 to obfuscate the benign and malware applications that give us the count of 4 classes (i) Benign (ii)
Malware (iii) Obfuscated Benign (iv) Obfuscated Malware (see Table 2). After applying obfuscation we generated
the binaries of these files which are then converted into colored images. Summarizing the methodology is as follows:

•	 benign and malware applications’ APK files are gathered
•	 extract the .zip file of the respective APK to get the classes.dex file
•	 for each classes.dex files we have generated the binary files
•	 obfuscation is being applied on benign and malware applications to get the two more classes: obfuscated

benign and obfuscated malware.
•	 the binary files are generated against the two new obfuscated classes from their classes.dex files
•	 binaries of all four classes are then converted into colored images

.apk
.dex Contains top-level informa�on of the file's informa�on, its sizes, and pointers or offsets to

where the other informa�on can be foundHeader
lists all the strings in the fileString_IDs
Java types are found in the type_ids sec�onType_IDs
Proto_ids contain the prototype methods in Cas�ng.javaProto_IDs
Each field _ id has three parts: the name of the class,
the type of the field, and the name of the fieldFields_IDs
Each method _ id has three parts: the name of the class,
the prototype of the method from the proto_ids sec�on,
and the name of the method.

Methods_IDs
Each class _ def has eight parts: the id of the class, the access_flags of the class, a type_id
for the superclass, an address for the interfaces list, a string_ id for the source file name,
another address for any annota�ons, an address for the class data, and a final addressClasses
Android version of the constant poolData
It is for sta�cally linked filesLink_Data

Fig. 1  The Structure of DEX file36.

Obfuscation
Type Dataset Malware/Benign

Total
Binaries

Total
Images

AVPass Kronodroid/AndroZoo benign 838 836

AVPass Kronodroid malware 1588 1586

AVPass Kronodroid obfuscated malware 1600 1562

Original Kronodroid/AndroZoo benign 4745 3988

Original Drebin malware 5554 3576

Obfuscapk Kronodroid/AndroZoo obfuscated benign 4885 4300

Obfuscapk Drebin obfuscated malware 5536 5285

Table 2.  Dataset Detail.

https://doi.org/10.1038/s41597-024-03027-3

4Scientific Data | (2024) 11:212 | https://doi.org/10.1038/s41597-024-03027-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

Obfuscation.  Malware, a well-known term is a malicious piece of software, used by attackers with the aim
of breaching the integrity, confidentiality, and authenticity of the computer system and user privacy6 whereas
malware obfuscation is a technique of defending anti-viruses which means hiding the program in a way
that becomes difficult to understand. Malware obfuscation techniques such as adding dump-code, reassign-
ment of registers, subroutine reordering, instruction substitution, code transposition, and code integration
can be applied to different types of malware such as Encrypted malware, Oligomorphic, Polymorphic, and
Metamorphic Malware12. To construct AndroDex image-based dataset, we have employed two types of obfus-
cation techniques to generate two sets of images (i) AVPass22 and (ii) Obfuscapk23. The main aim is to identify
the behavioral pattern of malware and benign applications through images. There exist many obfuscated benign
applications that are actually not malicious but are obfuscated just to protect the data. However, because of
obfuscation anti viruses usually label those classes as malware. Therefore, it becomes compulsory to identify
legitimate obfuscated applications from malicious obfuscated applications through images. As images reflect the
true representation of the applications, therefore, the AndroDex dataset can be used for the classification and
identification of malware and benign applications.

Malware
applications

Benign
applications

Obfuscation

classes.dex

Obfuscated Benign
applications

Obfuscated Malware
applications

classes.dex

Binaries
(benign apps & malware apps)

Image Generation
Process

AndroDex Dataset

Data Input Data Processing Data Output

Binaries
(obfuscated benign apps &
obfuscated malware apps)

Fig. 2  Workflow representing the data processing steps to obtain AndroDex Dataset.

Fig. 3  010 editor view of classes.dex files as decimal format.

https://doi.org/10.1038/s41597-024-03027-3

5Scientific Data | (2024) 11:212 | https://doi.org/10.1038/s41597-024-03027-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

Using AVPass22, we have applied six different types of obfuscation:

•	 API_Reflection
•	 String encryption
•	 Variable name encryption
•	 Package name encryption
•	 Method and Class name encryption
•	 Resource encryption

Fig. 4  010 editor view of classes.dex files as binary format.

https://doi.org/10.1038/s41597-024-03027-3

6Scientific Data | (2024) 11:212 | https://doi.org/10.1038/s41597-024-03027-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

Using Obfuscapk23, we have applied four different types of obfuscation:

•	 Renaming: ClassRename, FieldRename, MethodRename
•	 Encryption: LibEncryption, ResStringEncryption, AssetEncryption, ConstStringEncryption
•	 Code: ArithmeticBranch, Reorder, CallIndirection, DebugRemoval, Goto, MethodOverload, Nop
•	 Reflection: Reflection, AndvancedReflection

Image generation process.  To construct the AndroDex dataset, we have used DEX files which consist of
8-bit binary. For images, pixels are used whereas a pixel itself is an 8-bit binary vector24. Therefore, the bytes of
DEX files are converted to pixels that can effectively save time in extracting features from typical datasets. The
DEX file consists of three main sections: Header Section, Index Section, and Data Section. We have considered all
three sections to generate images that could be huge in size. Therefore, the rule for image generation is as follows:

If the DEX file size is < 10 kilobytes then the image matrix dimension would be 32 whereas if the DEX file
size is equal to 10 kilobytes or less than 30 kilobytes then the image matrix dimension would be as 64. Similarly,
if the DEX file size is equal to 30 kilobytes or less than 60 kilobytes the image matrix dimension would be 128,
and in case the DEX file size is equal to 60 kilobytes or less than 100 kilobytes the image matrix dimension would
be as 256. If the DEX file size is equal to 100 kilobytes or less than 200 kilobytes the image matrix would be 384.
Moreover, in case the DEX file size is equal to 200 kilobytes or less than 500 kilobytes the image matrix dimen-
sion would be as 512. If the DEX file size is equal to 500 kilobytes or less than 1000 kilobytes the image matrix
would be 768 and lastly, if the DEX file size is more than 1000 kilobytes then the image matrix would be as 1024
as shown in Table 3.

To generate images in colored .jpg format, we have used Python libraries such as matplotlib.pyplot, numpy,
os, math, and shut function, which take binaries file folder path as input, and generate images one by one. For
detail code analysis see section Code Availability and image conversion code18.

Data Records
AndroDex dataset17,18 consists of two main folders Set1 and Set2. Set1 is based on the AVPass obfuscation
techniques whereas Set2 is based on obfuscated techniques. Set1 consists of images belonging to three classes
i.e., benign, malware, and obfuscated malware. Set2 consists of images from four classes: benign, malware,
obfuscated benign, and obfuscated malware. The data records including the repository is available online
(see section Code Availability17,18). In addition, the records contain a folder AndroDex_code with all the codes,
script and intermediary data to reproduce the dataset or to add new indicators or new surveys. The folder

DEX file size Image Matrix

 < 10 KB 32

10 KB–30 KB 64

30 KB–60 KB 128

60 KB–100 KB 256

100 KB–200 KB 384

200 KB–500 KB 512

500 KB–1000 KB 768

 > 1000 KB 1024

Table 3.  Image Conversion Rule.

Classifier Image Matrix Accuracy Precision Recall F1-Score

SVM

64 86% 0.80 0.88 0.84

128 86% 0.83 0.83 0.83

256 88% 0.83 0.89 0.86

KNN

64 80% 0.72 0.87 0.79

128 81% 0.78 0.76 0.77

256 83% 0.85 0.72 0.78

RF

64 83% 0.75 0.89 0.82

128 84% 0.76 0.86 0.81

256 84% 0.79 0.85 0.80

XGBoost

64 86% 0.80 0.88 0.84

128 86% 0.83 0.83 0.83

256 88% 0.83 0.89 0.86

Table 4.  Classifiers and their Accuracy, Precision, Recall and F1-score without Normalization.

https://doi.org/10.1038/s41597-024-03027-3

7Scientific Data | (2024) 11:212 | https://doi.org/10.1038/s41597-024-03027-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

AndroDex_binaries included all the binary files in .txt format so the researchers can use these files to generate
images using their own parameters which will help them identify malware accordingly.

Technical Validation
To validate the AndroDex dataset, we proceeded by evaluating the AndroDex using several machine-learning
models for classifying malware. Since machine learning models can use images as input for the classification
process and can attain high accuracy over several challenging problems such as object detection, object clas-
sification, and identification. Therefore, we developed an approach to evaluate by applying various machine
learning models to the benchmark dataset for evaluation and comparison purposes. For this purpose, we have
evaluated the images using different matrices such as 64 × 64, 128 × 128, and 256 × 256. The parameters used for
evaluation are accuracy, precision, recall, and F1-score. The results of the classifiers without normalization are
displayed in Table 4 whereas the results of all the classifiers after normalization are displayed in Table 5.

The training set images have been normalized before use and for simplicity, Principle Component Analysis
(PCA) is applied to normalized data. Later, the normalized and reduced features are given as input to machine
learning classifiers to test the data. To cross-validate the data K-fold cross-validation is used. Lastly, to evaluate
the classifier’s performance metrics like accuracy, precision, recall, and F1-Score are used. The results of which
can be seen in Table 5.

The execution time taken by the proposed approach for pre-processing of the image is 0.07 s whereas it takes
0.09 s for feature extraction and 0.1 s for feature reduction against the total 21,133 images including both sets of
data. For training we have used 80% of the images and 20% of the images are used for testing. The total training
process took 2.5 s. The graphical representation can be seen in Fig. 5. However, the limitation of using this data-
set is that images are based on .dex files that is statically analyzed whereas dynamic analysis takes a lot of time
and space therefore, to overcome the issue of time and space this dataset can be used for the initial examination
of any apk files.

Machine learning algorithms.  Several Machine Learning (ML) algorithms such as SVM, KNN, XGBoost,
and RF are applied to analyze the malware images.

Classifier Image Matrix Accuracy Precision Recall F1-Score

SVM

64 88% 0.82 0.88 0.85

128 89% 0.84 0.85 0.85

256 90% 0.88 0.89 0.89

KNN

64 82% 0.73 0.87 0.79

128 82% 0.77 0.77 0.77

256 84% 0.86 0.74 0.79

RF

64 90% 0.88 0.90 0.90

128 91% 0.89 0.89 0.90

256 94% 0.90 0.90 0.91

XGBoost

64 92% 0.88 0.88 0.89

128 94% 0.91 0.92 0.92

256 95% 0.90 0.92 0.92

Table 5.  Classifiers and their Accuracy, Precision, Recall and F1-score after Normalization.
0.

07

0.
09

0.
1

I M A G E P R E - P R O C E S S I N G F E A T U R E E X T R A C T I O N F E A T U R E R E D U C T I O N

SE
CO

ND
S

(S
)

EXECUTION TIME

Fig. 5  Execution time taken during image pre-processing, feature extraction and feature reduction.

https://doi.org/10.1038/s41597-024-03027-3

8Scientific Data | (2024) 11:212 | https://doi.org/10.1038/s41597-024-03027-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

SVM.  SVM is an ML model based on supervised learning that analyzes data for classification purposes. SVM
learns from the past input data and makes future predictions as output using a mapping function s = f(x); where
s is a scalar that represents one of the categories in order to build a model, and x is a high-dimensional feature
vector containing numerical values25. For this purpose, the SVM needs a training set with each example labeled
as belonging to one of two categories such as malware or benign in our case. Multi-class SVMs (MCSVM) can
also be implemented by combining several binary SVMs26. SVM uses hyperplanes that have the maximum dis-
tance to the support vectors of any class to create a classifier with a maximal margin. The aim of SVM is to find
the largest distance margin that leads to getting the optimal hyperplane to produce good results. The chances of
misclassification increase if the hyperplane has a low or no margin. If the classes cannot be separated linearly,
SVM can turn this space into a higher-dimensional feature space. Kernel functions, such as polynomials, radial
basis functions (RBF), or sigmoid functions, are used to accomplish this. We have used linear, RBF, polynomials,
and sigmoid for classifying obfuscated malware images.

KNN.  K-Nearest Neighbors also termed as KNN is a supervised ML classification algorithm. It is a
non-parametric classification method which is a simple yet effective method for classification27. For a data
record d to be classified, its k nearest neighbors are redeemed, and thus creates a neighborhood of d. It is a
method to classify data d based on the closest samples from a neighbor. However, the unknown data points
are classified by majority votes from chosen k. To apply kNN, we select an acceptable value for k with uniform
weights for predictions, and thus the classification’s outcome heavily depends on this k value. In another way, the
kNN method is biased by k. There are numerous methods for selecting the k value, but one straightforward one
is to repeatedly run the algorithm with various k values and select the one that performs the best.

Random forest.  One of the most well-known and effective ensemble-supervised machine learning techniques
is the Random Forest (RF) algorithm by Leo Breiman28. An approach known as an ensemble learner of classifica-
tion trees29 produces numerous individual learners and aggregates the outcomes. RF uses the bagging method30
for improvement, where, each classifier is constructed separately by working with a bootstrap sample of the
input data. In a typical decision tree classifier, a decision is taken based on all of the feature properties at a node
split, however, in RF, the best parameter at each node in a decision tree is made from a randomly selected num-
ber of features31. This random feature selection lessens the interdependence (correlation) between the feature
properties. Thus, this approach is less susceptible to the data’s intrinsic noise32.

For validation, we use an RF classifier which is formed by a bunch of decision trees33. And we use the Python
ski earn library function: srf = RF(n _ estimators = n, njobs = −1) to build the random forest with several trees
number. And use the python sklearn library function: srf.fit(x _train, Ltrain) to input the training datasets and
use the python sklearn library function: srf.score(x _test, y _test) to see the result shown in Table 4 without nor-
malization and Table 5 after normalization.

XGBoost.  XGboost stands for eXtreme Gradient Boosting package is a supervised algorithm built on ensemble
trees and an extension of gradient boosting. It is an efficient, prominent, and scalable classifier for the imple-
mentation of a gradient-boosting framework. In addition, it achieves good performance as it has several fea-
tures such as speed, high expandability, input type, sparsity, customization, and performance34,35. The package
comprises of optimized linear model solver and tree learning algorithm with regularization term and loss func-
tion. It supports Generalized Linear Machine Learning algorithms and GBDT model to implement in Gradient
Boosting Framework. The basic model of GBDT are Regression Tree or CART (classification and regression
tree)35. For XGBoost we gave used the default parameters.

Usage Notes
The AndroDex dataset is provided in binary as well as image format so it can be easily used in any data process-
ing software. The images and binaries can be easily opened and processed using Notepad, R, python, WEKA, or
any other software whereas .txt files can be used and opened in any format. These files can be easily converted
into .csv format to ready by Python, R, WEKA, etc. All the files are password protected and the password is
androdex. The files are archived and password protected, however, the password is publicly availabe to re use this
dataset. The reason of using password is to make sure that none of the files were mistakenly deleted by server by
considering them malicious. As the files are malicious so server usually delete them, therefore for safety purpose
the password is enabled. User can download the folder, extract the files by entering androdex password and use
all the images easily.

Code availability
The dataset AndroDex is publicly available and can be accessed via the following links:

Binaries of all files along with the code to convert images of any size are available at18: https://doi.
org/10.6084/m9.figshare.23931477.v1, whereas images converted are available at17 https://doi.org/10.6084/
m9.figshare.23931204.v1.

All the files are password protected to make sure that none of the files were deleted by server and the password
is androdex.

The AVPass obfuscation technique that applied is available at (https://github.com/sslab-gatech/avpass) whereas
Obfuscapk technique is available at (https://github.com/ClaudiuGeorgiu/Obfuscapk).

Received: 15 August 2023; Accepted: 30 January 2024;
Published: xx xx xxxx

https://doi.org/10.1038/s41597-024-03027-3
https://doi.org/10.6084/m9.figshare.23931477.v1
https://doi.org/10.6084/m9.figshare.23931477.v1
https://doi.org/10.6084/m9.figshare.23931204.v1
https://doi.org/10.6084/m9.figshare.23931204.v1
https://github.com/sslab-gatech/avpass
https://github.com/ClaudiuGeorgiu/Obfuscapk

9Scientific Data | (2024) 11:212 | https://doi.org/10.1038/s41597-024-03027-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

References
	 1.	 Azad, M. A. et al. Deepsel: A novel feature selection for early identification of malware in mobile applications. Future Generation

Computer Systems 129, 54–63 (2022).
	 2.	 Imtiaz, S. I. et al. Deepamd: Detection and identification of android malware using high-efficient deep artificial neural network.

Future Generation computer systems 115, 844–856 (2021).
	 3.	 Aurangzeb, S., Anwar, H., Naeem, M. A. & Aleem, M. Bigrc-eml: big-data based ransomware classification using ensemble machine

learning. Cluster Computing 1–18 (2022).
	 4.	 Tam, K., Feizollah, A., Anuar, N. B., Salleh, R. & Cavallaro, L. The evolution of android malware and android analysis techniques.

ACM Computing Surveys (CSUR) 49, 1–41 (2017).
	 5.	 Dong, S. et al. Understanding android obfuscation techniques: A large-scale investigation in the wild. In International conference on

security and privacy in communication systems, 172–192 (Springer, 2018).
	 6.	 De Paola, A., Gaglio, S., Re, G. L. & Morana, M. A hybrid system for malware detection on big data. In IEEE INFOCOM 2018-IEEE

Conference on Computer Communications Workshops (INFOCOM WKSHPS), 45–50 (IEEE, 2018).
	 7.	 Aurangzeb, S., Rais, R. N. B., Aleem, M., Islam, M. A. & Iqbal, M. A. On the classification of microsoft-windows ransomware using

hardware profile. PeerJ Computer Science 7, e361 (2021).
	 8.	 Guo, R., Liu, Q., Zhang, M., Hu, N. & Lu, H. A survey of obfuscation and deobfuscation techniques in android code protection. In

2022 7th IEEE International Conference on Data Science in Cyberspace (DSC), 40–47 (IEEE, 2022).
	 9.	 Dang, Q.-V. Enhancing obfuscated malware detection with machine learning techniques. In International Conference on Future Data

and Security Engineering, 731–738 (Springer, 2022).
	10.	 Conti, M., Vinod, P. & Vitella, A. Obfuscation detection in android applications using deep learning. Journal of Information Security

and Applications 70, 103311 (2022).
	11.	 Gorment, N. Z., Selamat, A. & Krejcar, O. Anti-obfuscation techniques: Recent analysis of malware detection. In New Trends in

Intelligent Software Methodologies, Tools and Techniques, 181–192 (IOS Press, 2022).
	12.	 You, I. & Yim, K. Malware obfuscation techniques: A brief survey. In 2010 International conference on broadband, wireless computing,

communication and applications, 297–300 (IEEE, 2010).
	13.	 Elsersy, W. F., Feizollah, A. & Anuar, N. B. The rise of obfuscated android malware and impacts on detection methods. PeerJ

Computer Science 8, e907 (2022).
	14.	 Harter, G. T. & Rowe, N. C. Testing detection of k-ary code obfuscated by metamorphic and polymorphic techniques. In National

Cyber Summit, 110–123 (Springer, 2021).
	15.	 Nguyen, D. V., Nguyen, G. L., Nguyen, T. T., Ngo, A. H. & Pham, G. T. Minad: Multi-inputs neural network based on application

structure for android malware detection. Peer-to-Peer Networking and Applications 15, 163–177 (2022).
	16.	 Zhang, W., Luktarhan, N., Ding, C. & Lu, B. Android malware detection using tcn with bytecode image. Symmetry 13, 1107 (2021).
	17.	 Aurangzeb, S., Aleem, M., Khan, M. T., Loukas, G. & Sakellari, G. Androdex images. figshare. dataset. https://doi.org/10.6084/

m9.figshare.23931204.v1 (2023).
	18.	 Aurangzeb, S., Aleem, M., Khan, M. T., Loukas, G. & Sakellari, G. Androdex binaries. figshare. dataset. https://doi.org/10.6084/

m9.figshare.23931477.v1 (2023).
	19.	 Arp, D. et al. Drebin: Effective and explainable detection of android malware in your pocket. In Ndss, 14, 23–26 (2014).
	20.	 Guerra-Manzanares, A., Bahsi, H. & Nõmm, S. Kronodroid: time-based hybrid-featured dataset for effective android malware

detection and characterization. Computers & Security 110, 102399 (2021).
	21.	 Allix, K., Bissyandé, T. F., Klein, J. & Le Traon, Y. Androzoo: Collecting millions of android apps for the research community. In

Proceedings of the 13th international conference on mining software repositories, 468–471 (2016).
	22.	 Jeon, C., Yun, I., Jung, J., Wolotsky, M. & Kim, T. Avpass: Leaking and bypassing antivirus detection model automatically. In Black

Hat USA 2017 (Black Hat, 2017).
	23.	 Aonzo, S., Georgiu, G. C., Verderame, L. & Merlo, A. Obfuscapk: An open-source black-box obfuscation tool for android apps.

SoftwareX 11, 100403 (2020).
	24.	 Fang, Y., Gao, Y., Jing, F. & Zhang, L. Android malware familial classification based on dex file section features. IEEE Access 8,

10614–10627 (2020).
	25.	 Cabau, G., Buhu, M. & Oprisa, C. P. Malware classification based on dynamic behavior. In 2016 18th International Symposium on

Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), 315–318 (IEEE, 2016).
	26.	 Udayakumar, N., Saglani, V. J., Cupta, A. V. & Subbulakshmi, T. Malware classification using machine learning algorithms. In 2018

2nd International Conference on Trends in Electronics and Informatics (ICOEI), 1–9 (IEEE, 2018).
	27.	 Guo, G., Wang, H., Bell, D., Bi, Y. & Greer, K. Knn model-based approach in classification. In OTM Confederated International

Conferences” On the Move to Meaningful Internet Systems”, 986–996 (Springer, 2003).
	28.	 Breiman, L. Random forests. Machine learning 45, 5–32 (2001).
	29.	 Breiman, L. Classification and regression trees (Routledge, 2017).
	30.	 Breiman, L. Bagging predictors. Machine learning 24, 123–140 (1996).
	31.	 Alam, M. S. & Vuong, S. T. Random forest classification for detecting android malware. In 2013 IEEE international conference on

green computing and communications and IEEE Internet of Things and IEEE cyber, physical and social computing, 663–669 (IEEE,
2013).

	32.	 Joshi, S., Upadhyay, H., Lagos, L., Akkipeddi, N. S. & Guerra, V. Machine learning approach for malware detection using random
forest classifier on process list data structure. In Proceedings of the 2nd International Conference on Information System and Data
Mining, 98–102 (2018).

	33.	 Yang, M. & Wen, Q. Detecting android malware by applying classification techniques on images patterns. In 2017 IEEE 2nd
International Conference on Cloud Computing and Big Data Analysis (ICCCBDA), 344–347 (IEEE, 2017).

	34.	 Chen, T. et al. Xgboost: extreme gradient boosting. R package version 0.4-2 1, 1–4 (2015).
	35.	 Bhagat, M. & Kumar, D. Performance evaluation of pca based reduced features of leaf images extracted by dwt using random forest

and xgboost classifier. Multimedia Tools and Applications 1–30 (2023).
	36.	 Nolan, G. Inside the dex file. In Decompiling Android, 57–92 (Springer, 2012).

Author contributions
S.A. conceived and led the experiment(s) that were carried by all other authors. All authors analyzed the results.
S.A. wrote the initial version of the manuscript, while all others reviewed and revised the manuscript. Moreover,
all authors initially conceptualised the presented work and finalized structure and contents of the paper.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to M.T.K.

https://doi.org/10.1038/s41597-024-03027-3
https://doi.org/10.6084/m9.figshare.23931204.v1
https://doi.org/10.6084/m9.figshare.23931204.v1
https://doi.org/10.6084/m9.figshare.23931477.v1
https://doi.org/10.6084/m9.figshare.23931477.v1

1 0Scientific Data | (2024) 11:212 | https://doi.org/10.1038/s41597-024-03027-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

https://doi.org/10.1038/s41597-024-03027-3
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	AndroDex: Android Dex Images of Obfuscated Malware

	Background & Summary

	Methods

	Dataset acquisitions.
	Dataset overview.
	Obfuscation.

	Image generation process.

	Data Records

	Technical Validation

	Machine learning algorithms.
	SVM.
	KNN.
	Random forest.
	XGBoost.

	Usage Notes

	Fig. 1 The Structure of DEX file36.
	Fig. 2 Workflow representing the data processing steps to obtain AndroDex Dataset.
	Fig. 3 010 editor view of classes.
	Fig. 4 010 editor view of classes.
	Fig. 5 Execution time taken during image pre-processing, feature extraction and feature reduction.
	Table 1 Structure of Android APK file.
	Table 2 Dataset Detail.
	Table 3 Image Conversion Rule.
	Table 4 Classifiers and their Accuracy, Precision, Recall and F1-score without Normalization.
	Table 5 Classifiers and their Accuracy, Precision, Recall and F1-score after Normalization.

